федеральное государственное бюджетное образовательное учреждение высшего образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Рабочая программа дисциплины **Основы геофизики**

Образовательная программа среднего профессионального образования – программа подготовки специалистов среднего звена

Специальность **05.02.03 Метеорология**

программа базовой подготовки на базе среднего общего образования

Форма обучения Очная

Утверждаю Проректор ио учебной работе

Н.О. Верещагина

Рассмотрена и утверждена на заседании ученого совета метеорологического факультета

«12» декабря 2022 г., протокол № 5

Декан метеорологического факультета
______Я.В. Дробжева

Санкт-Петербург 2023

СОДЕРЖАНИЕ

1. ПАСПОРТ РАБОЧЕЙ УЧЕБНОЙ ПРОГРАММЫ ДИСЦИПЛИНЫ	4
1.1. Область применения программы	4
1.2. Место учебной дисциплины в структуре ПП ССЗ	4
1.3. Цели и задачи дисциплины – требования к результатам освоения дисципли	ны4
1.4. Количество часов на освоение рабочей учебной программы дисциплины:	5
2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	6
2.1. Объем дисциплины и виды учебной работы	6
2.2. Тематический план и содержание дисциплины	7
3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ	10
3.1. Требования к минимальному материально-техническому обеспечению	10
3.2. Информационное обеспечение обучения	10
4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ	12

1. ПАСПОРТ РАБОЧЕЙ УЧЕБНОЙ ПРОГРАММЫ ДИСЦИПЛИНЫ ОП.04. Основы геофизики

1.1. Область применения программы

Рабочая учебная программа дисциплины является частью программы подготовки специалистов среднего звена (ПП ССЗ) по специальности **05.02.03 Метеорология.**

1.2. Место учебной дисциплины в структуре ПП ССЗ

ОП (общепрофессиональный цикл).

1.3. Цели и задачи дисциплины – требования к результатам освоения дисциплины

В результате освоения дисциплины обучающийся должен уметь:

- понимать и интерпретировать комплексную геофизическую информацию, получаемую при исследовании геосфер;
- -использовать геофизическую информацию при изучении и анализе гидрометеорологических процессов.

В результате освоения дисциплины обучающийся должен знать:

- методологические основы геофизики;
- современные взгляды на устройство Вселенной и Солнечной системы как ее структурного элемента;
- геометрические модели Земли;
- устройство поверхности Земли и ее геосфер;
- основные характеристики геофизических полей;
- геохронологические шкалы;
- связь физических полей Земли с природными и антропогенными процессами;
- возможности геофизических методов, применяемых при исследовании всех геосфер;
- характер и принципы взаимодействия геосфер;
- устройство и функционирование границ океан-литосфера и атмосфера литосфера;
- основные теории развития поверхности литосферы.

Формируемые компетенции:

Код	Наименование результата обучения			
OK 02	Осуществлять поиск, анализ и интерпритацию информации,			
	необходимой для выполнения задач профессиональной			
	деятельности			

1.4. Количество часов на освоение рабочей учебной программы дисциплины:

максимальной учебной нагрузки обучающегося - **56** ч., в том числе: - обязательных учебных занятий - **56** ч.

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1. Объем дисциплины и виды учебной работы

Вид учебной работы	Объем часов	
Максимальная учебная нагрузка	56	
Обязательная аудиторная учебная нагрузка (всего)	48	
в том числе:		
лекции	26	
практические занятия	22	
Самостоятельная работа обучающегося	-	
Аттестация в форме: экзамен (3 семестр)		

2.2. Тематический план и содержание дисциплины ОП.04. Основы геофизики

Наименование	Содержание учебного материала, лабораторные работы, самостоятельная работа	Объем часов
разделов и тем	обучающихся	
1	2	3
Раздел 1.	1.1.Предмет, содержание и основные задачи геофизики в рамках общего курса о природе	
Введение.	Земли.	
Геофизические	1.2.Методологические основы геофизики.	
данные, их	1.3. Этапы её развития на фоне смены геологических парадигм.	4
обработка и	1.4.Геофизические методы измерений и анализа экспериментальных данных.	
интерпретация.	1.5. Моделирование как метод познания, понятия объективности и истинности моделей и	
	теорий, современные взгляды на природные системы и законы, лежащие в основе наук о Земле.	
Раздел 2.	1.1.Современные представления о Вселенной.	
Земля в структуре	1.2.Понятие Метагалактики, ее материальное и полевое наполнение, возраст.	
Вселенной.	1.3. Нестационарность Вселенной, закон Хаббла, теория Большого взрыва.	
	1.4.Звезды, их рождение, жизнь и смерть.	
	1.5.Галактики, сверхсистемы галактик.	8
	1.6.Строение нашей Галактики, ее структурные и физические характеристики.	O
	1.7.Гипотезы происхождения Солнечной системы. Ее общая характеристика. Правило	
	Тициуса-Боде, законы Кеплера, закон всемирного тяготения. Астероиды, метеориты,	
	кометы.	
	1.8.Геометрические модели Земли, её планетарные характеристики.	
	Консультация перед контрольной работой	4
Раздел 3.	1.1. Устройство поверхности нашей планеты. Гипсографическая кривая.	
Физические	Морфометрические характеристики океанов и континентов.	
модели Земли.	1.2.Внешние оболочки Земли. Условия существования, происхождение, состав,	
	элементы структуры атмосферы. Условия существования, происхождение, состав,	
	элементы структуры гидросферы.	
	1.3. Биосфера. Состав, границы, энергетическое значение для Земли. Связь с	8
	экологическими системами. Слой жизни и техносфера. Их связь с внешними геосферами.	
	1.4.Внутренние оболочки земли. Структурная и очаговая сейсмология. Сейсмические	
	модели внутреннего строения Земли. Собственные колебания Земли. Механические	
	модели Земли (плотность, давление, температура, ускорение силы тяжести,	

	добротность).	
	1.5. Современные понятия о земной коре. Типы земной коры, их вещественная и	
	структурная характеристики. Мантия и ядро Земли. Кристаллы. Минералы. Горные	
	породы. Магматизм. Метаморфизм. Тектонические деформации.	
Раздел 4.	1.1.Гравитационное поле. Фигура Земли. Гравитационные аномалии. Поправки Фая и	
Геофизические	Буге. Принципы изостазии. Гравитационное взаимодействие системы Земля – Луна.	
поля.	1.2. Тепловое поле. Тепловой поток. Закон Фурье. Геотермический градиент в коре и	
	верхней мантии. Пределы для температур в Земле. Конвекция в мантии. Источники	
	тепловой энергии Земли.	
	1.3. Магнитное поле. Его физическая природа, общая характеристика. Основные	
	параметры. Магнитные полюса, их миграция в геологической истории Земли.	8
	Вариации магнитного поля. Магнитные бури.	
	1.4.Электрические поля. Процессы в магнитосфере и ионосфере, солнечная активность.	
	Поля теллурических и грозовых разрядов, техногенные поля.	
	1.5. Радиационные поля. Понятие радиоактивности. Общая характеристика природных	
	радиоактивных семейств, их распределение в земной коре и роль в энергетическом	
	балансе Земли.	
Раздел 5.	1.1.Пространственно-временной изоморфизм. Принцип Н. Стенона и его иллюстрация	
Пространство и	на геологических примерах. Относительная геохронология. Стратиграфическая	
время в науках о	шкала. Её событийная основа, безразмерность и последовательный характер.	
Земле.	Структура стратиграфической шкалы планетарного масштаба (международная	
	стратиграфическая шкала, МСШ).	8
	1.2. Абсолютная геохронологическая шкала. Понятие геологического возраста пород и	O
	структурных подразделений земной коры. Уравнение радиоактивного распада.	
	Принципиальные допущения при оценках абсолютного возраста.	
	1.3.Магнитная геохронологическая шкала. Её физическая основа. Макеты магнитных	
	геохронологических шкал.	
Раздел 6.	1.1.Геодинамические системы и циклы.	
Взаимодействие	1.2. Теория тектоники литосферных плит. Основные положения. Литосфера и	
внутренних	астеносфера. Конструктивные границы плит. Океанические хребты. Зоны субдукции.	
геосфер.	Трансформные разломы и тройные сочленения. Вулканизм и горячие точки.	8
	Движения плит. Тектоника на сфере. Модели движения плит.	J
	1.3.Современные горизонтальные движения. Палегеодинамические реконструкции.	
	Палеомагнетизм. Континентальная коллизия. Мантийная конвекция и тектоника	
	литосферных плит.	
Раздел 7.	1.1.Радиационный теплообмен между Солнцем, Землей и Космосом. Энергетический	4

Взаимодействие	баланс солнечного излучения.	
внешних геосфер.	1.2.Взаимодействие океана и атмосферы. Взаимодействие океана и литосферы.	
	1.3. Абразионно-аккумулятивные процессы на внутреннем шельфе.	
	1.4.Осадкообразование в открытом океане. Водообмен литосферы и океана.	
	1.5. Тектогенез океанического дна. Взаимодействие атмосферы и суши. Выветривание.	
	Геологическая деятельность ветра. Геологическая деятельность вод. Озера и болота.	
	Геологическая деятельность льда.	
	Экзамен	4
	Всего:	56

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ

3.1. Требования к минимальному материально-техническому обеспечению

Реализация дисциплины требует наличия:

- 211 Кабинет «Основ автоматики», оснащенный специализированной мебелью, переносным мультимедиа проектором, комплектом учебнонаглядных пособий
- 317 Лаборатория электротехники, электроники и электрорадиоизмерений, оснащенная специализированной мебелью, персональными компьютерами, лабораторными установками и приборами
- 420 Помещение для хранения и профилактического обслуживания учебного оборудования, оснащенное столами, инструментами для ремонта и обслуживания учебного оборудования, комплектующими и расходными материалами для оргтехники
- 103.2 Помещение для самостоятельной работы обучающихся, оснащенное специализированной мебелью, персональными компьютерами с подключением к сети «Интернет» и доступом в электронную информационно-образовательную среду университета

Читальный зал. Помещение для самостоятельной работы обучающихся, оснащенное специализированной мебелью, персональными компьютерами с подключением к сети «Интернет» и доступом в электронную информационно-образовательную среду университета

207 Компьютерный зал (для самостоятельной работы обучающихся), оснащенный специализированной мебелью, персональными компьютерами с подключением к сети «Интернет» и доступом в электронную информационно-образовательную среду университета

3.2. Информационное обеспечение обучения

Перечень учебных изданий, учебно-методических изданий, Интернетресурсов, электронные ресурсы

Учебные издания

Основные:

- 1. Павлов А.Н. Геофизика. Общий курс о природе Земли. Учебник. Изд. 2-е, перераб. и доп. СПб.: РГГМУ, 2015. 455 с. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/rid_0d48a3cabc3e42168041cc8c1b902cd3.pdf
- 2. Трухин В.И., Показеев К.В., Куницын В.Е. Общая и экологическая геофизика. –М.: ФИЗМАТЛИТ, 2005. 576 с.
- 3. Физика Земли: учебник / В.С. Захаров, В.Б. Смирнов. М.: ИНФА-М, 2016. 328 с.

- 4. Мохнач М.Ф., Прокофьева Т.И. Геология. Учебник для вузов. Книга 1. Геосферы СПб.: изд. РГГМУ, 2010. 263 с. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/img-503202005.pdf
- 5. Мохнач М.Ф., Прокофьева Т.И. Геология. Учебник для вузов. Книга 2. Геодинамика СПб.: изд. РГГМУ, 2010. 280 с. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/img-504172806.pdf

Дополнительные:

- 1. Аплонов С.В., Титов К.В. Геофизика для геологов: Учебник. СПб.: Издательство СПбГУ, 2010. 248 с.
- 2. Общая геология: учебное пособие, электронное издание сетевого распространения / Н. В. Короновский. М.: «КДУ», «Добросвет», 2018. Электронный библиотечный ресурс: https://bookonlime.ru/product/obshchaya-geologiya
- 3. Тарасов Л.В. Атмосфера нашей планеты. М.: ФИЗМАТЛИТ, 2012. 420 с.
- 4. Короновский Н.В., Ясаманов Н.А. Геология. Учебник. М.: изд. Академия, $2006.-448~\mathrm{c}.$
- 5. Якушова А.Ф., Хаин В.Е., Славин В.И. Общая геология. Учебник. М.: изд-во МГУ, 1988.-448 с.

Интернет- ресурсы

- 1. http://znanium.com. электронная библиотечная система.
- 2. http://elibrary.ru. электронная научная библиотека.
- 3. https://dic.academic.ru/dic.nsf/bse/153112 Экзогенные процессы
- 4. www.mining-enc.ru/et/endogennye-processy Эндогенные процессы
- 5. http://www.pegmatite.ru/My_Collection/mineralogy/5tr.htm минералы
- 6. https://www.geokniga.org/collections/3608 учебники и монографии по геологии
 - 7. https://wiki.web.ru/wiki открытая энциклопедия по наукам о Земле

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе аудиторных учебных занятий, по результатам самостоятельной работы, во время промежуточной аттестации.

Контроль и оценка результатов освоения дисциплины осуществляется в соответствии с программой текущего контроля успеваемости и промежуточной аттестации.

Конкретные формы и процедуры текущего контроля успеваемости, промежуточной аттестации по дисциплине определены программой текущего контроля успеваемости и промежуточной аттестации.

Оценка качества подготовки осуществляется в двух направлениях:

- оценка уровня освоения дисциплины;
- оценка компетенций обучающихся.