федеральное государственное бюджетное образовательное учреждение высшего образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра	ФИЗИКИ	
---------	--------	--

Рабочая программа по дисциплине

ТЕОРИЯ КОЛЕБАНИЙ И ВОЛН

Основная профессиональная образовательная программа высшего образования программы бакалавриата по направлению подготовки

03.03.02 «Физика»

Направленность (профиль):

Физика

Квалификация:

Бакалавр

Форма обучения

Очная

Согласовано Руководитель ОПОП «Физика»		Утверждаю Председатель УМС <u>желе</u> И.И. Палкин
	Бобровский А.П.	Рекомендована решением Учебно-методического совета <u>19 сеюмя</u> 2018 г., протокол № <u>4</u>
		Рассмотрена и утверждена на заседании кафедры 15

Составитель: Дьяченко Наталия Владимировна, канд. ф.-м. н., д.т.н., профессор кафедры физики РГГМУ.

Ответственный редактор: Бобровский А.П. заведующий кафедрой физики РГГМУ.

Рецензент: Е.Н. Бодунов, д. ф.-м. н., профессор, зав. каф. «Физика» ПГУПС

[©] Дьяченко Н. В., 2018 г.

[©] Российский государственный гидрометеорологический университет (РГГМУ), 2018.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью дисциплины "Теория колебаний и волн" является формирование у студентовфизиков углубленных знаний о колебательных и волновых процессах, протекающих в окружающей среде и позволяющих им осваивать соответствующие разделы специальных дисциплин.

Основные задачи — ознакомление с теоретическими подходами к описанию колебательных и волновых явлений в природе и технике, основными способами решения колебательных уравнений и анализом физического смысла полученных решений

2.МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Теория колебаний и волн»(Б1.В.09) для направления 03.03.02 — Физика относится к вариативным обязательным дисциплинам цикла Б.1. и изучается в шестом семестре. Дисциплина преподается на основе ранее изученных дисциплин: «Математика», «Общая физика», «Теоретическая механика», «Методы математической физики».

Дисциплина «Теория колебаний и волн» необходима для освоения следующих дисциплин «Теория переноса электромагнитного излучения в газах», «Математическое моделирование переноса загрязнений в атмосфере», «Математическое моделирование антропогенных воздействий на водные экосистемы», «Геофизическая гидродинамика», «Статистическая гидромеханика», «Численные методы и математическое моделирование».

ОСОБЕННОСТИ ОСВОЕНИЯ ДИСЦИПЛИНЫ ДЛЯ ИНВАЛИДОВ И ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Ключевыми компетенциями, формируемыми в процессе изучения дисциплины, являются ОПК-2, ОПК-3 и ПК-1.

ОПК-3:Способность использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач			
Уровень освоения	Признаки проявления		
Продвинутый			
Знает:	основные виды колебательных процессов, их характеристики, законы их описывающие, физический смысл входящих в них констант		
Умеет:	Описывать наблюдаемые колебательные процессы с помощью уравнений		
Владеет:	навыками решения колебательных уравнений, анализа физического смысла полученных решений		
ПК-1: способно	сть использовать специализированные знания в области физики для		
	освоения профильных физических дисциплин		
Минимальный			
Знает:	Общие подходы к изучению колебательных процессов в различных динамических системах		
Умеет:	Выделять общее и различное в колебательных системах и сопоставлять им соответствующую модель		
Владеет:	Навыками анализа границ применимости моделей		
Базовый			
Знает:	Методы и приемы теории колебаний и волн		
Умеет:	Решать конкретные колебательные задачи, применяя наиболее адекватные им методы и приемы		
Владеет:	Приемами электромеханической аналогии		
Продвинутый			
Знает:	Характер протекания колебательных процессов в гидрометеорологии, экологии и смежных науках		
Умеет:	Выявлять существенные особенности колебательных движений в этих областях, строить их физические модели, понимает границы их применимости		
Владеет:	навыками самостоятельного решения профессиональных задач с применением теории колебаний и волн		
ОПК-2: способн	ость использовать в профессиональной деятельности базовые знания		
- v	ых разделов математики, создавать математические модели типовых		
профессиона	льных задач и интерпретировать полученные результаты с учетом		
	границ применимости моделей.		
Уровень освое	1 1		
Продвинуты			
Знает	Фундаментальные разделы математики, численных методов, методов математической физики, теории интегральных уравнений, применяемые в теории колебаний и волн		
Умеет	Выделять существенные черты колебательных и волновых процессов и строить их математические модели		
Владеет	специальными математическими навыками решения задач теории колебаний и волн, анализа полученных решений с учетом границ		

применимости моделей

В результате освоения компетенций в рамках дисциплины «Теория колебаний и волн» обучающийся должен:

Знать:

- основные виды колебательных процессов, их характеристики, законы их описывающие, физический смысл входящих в них констант;
- общие подходы к изучению колебательных процессов в различных динамических системах;
- методы и приемы теории колебаний и волн;
- особенности протекания колебательных процессов в гидрометеорологии, экологии и смежных науках физический смысл констант в этих уравнениях
- фундаментальные разделы математики, численных методов, методов математической физики, теории интегральных уравнений, применяемые в теории колебаний и волн

уметь:

- описывать наблюдаемые колебательные процессы с помощью уравнений решать основные уравнения теории колебаний и волн
- выделять общее и различное в колебательных системах и сопоставлять им соответствующую модель;
- решать конкретные колебательные задачи, применяя наиболее адекватные им методы и приемы;
- выявлять существенные особенности колебательных движений в областях гидрометеорологии и экологии, строить их физические модели, понимает границы их применимости
- выделять существенные черты колебательных и волновых процессов и строить их математические модели

владеть:

- навыками решения колебательных уравнений, анализа физического смысла полученных решений основными подходами к решению колебательных и волновых задач
- навыками анализа границ применимости моделей;
- приемами электромеханической аналогии;
- навыками самостоятельного решения профессиональных задач с применением теории колебаний и волн
- специальными математическими навыками решения задач теории колебаний и волн, анализа полученных решений с учетом границ применимости моделей

Соответствие уровней освоения компетенции планируемым результатам обучения и критериям их оценивания

Этап (уровень)			Основные признаки проявленияи ко	омпетенции (дескрипторное описание уровня	я)
освоения компетенции	1. 2.		3.	4.	5.
	не владеет	слабо ориентируется в терминологии и содержании	Способен выделить основные идеи текста, работает с критической литературой	Владеет основными навыками работы с источниками и критической литературой	Способен дать собственную критическую оценку изучаемого материала
Уровень 1 (минимальный)	не умеет	не выделяет основные идеи	Способен показать основную идею в развитии	Способен представить ключевую проблему в ее связи с другими процессами	Может соотнести основные идеи с современными проблемами
	не знает	допускает грубые ошибки	Знает основные рабочие категории, однако не ориентируется в их специфике	Понимает специфику основных рабочих категорий	Способен выделить характерный авторский подход
	не владеет		Владеет приемами поиска и систематизации, но не способен свободно изложить материал	Свободно излагает материал, однако не демонстрирует навыков сравнения основных идей и концепций	Способен сравнивать концепции, аргументированно излагает материал
Уровень 2 (базовый)	не умеет	выделяет основные идеи, но не видит проблем	Выделяет конкретную проблему, однако излишне упрощает ее	но испытывает сложности с их	Аргументированно проводит сравнение концепций по заданной проблематике
	не знает	допускает много ошибок	Может изложить основные рабочие категории	Знает основные отличия концепций в заданной проблемной области	Способен выделить специфику концепций в заданной проблемной области
не владеет		ориентируется в	В общих чертах понимает основную идею, однако плохо связывает ее с существующей проблематикой	Видит источники современных проблем в заданной области анализа, владеет подходами к их решению	Способен грамотно обосновать собственную позицию относительно решения современных проблем в заданной области
Уровень 3 (продвинутый)	не умеет	7 1	Может понять практическое назначение основной идеи, но затрудняется выявить ее основания	Выявляет основания заданной области анализа, понимает ее практическую ценность, однако испытывает затруднения в описании сложных объектов анализа	Свободно ориентируется в заданной области анализа. Понимает ее основания и умеет выделить практическое значение заданной области
	не знает		Способен изложить основное содержание современных научных идей в рабочей области анализа	Знает основное содержание современных научных идей в рабочей области анализа, способен их сопоставить	Может дать критический анализ современным проблемам в заданной области анализа

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Объем дисциплины по видам учебных занятий в академических часах

Год набора	2015, 2016, 2017, 2018 г.г. набора
Общая трудоемкость дисциплины	144
Контактная работа обучающихся с преподавателем — всего:	64
лекции	32
практические занятия	32
Самостоятельная работа (СРС) – всего:	80
Вид промежуточной аттестации	экзамен
(экзамен)	

Общая трудоемкость дисциплины составляет 4 зачетных единицы, 144 часа, из них аудиторных занятий 64 часа, в том числе - число аудиторных часов занятий в активной или в интерактивной форме -32 часа.

4.1. Структура дисциплины по всем годам набора

№	Раздел				в активной и ной форме	его контроля емости	компетенции
п/п			Практические занятия	Самостоятель ная работа	Из них часов в активной и интерактивной форме	Формы текущего контроля успеваемости	Формируемые компетенции
1	Введение.	2	2	7	2	опрос, тестовое задание	ОПК-2, ОПК-3, ПК-1
2	Линейные колебания в дискретных системах с одной степенью свободы	12	12	7	12	опрос, тестовое задание	ОПК-2, ОПК-3, ПК-1
3	Линейные колебания в дискретных системах с двумя степенями свободы	2	2	7	2	опрос, тестовое задание	ОПК-2, ОПК-3, ПК-1
4	Линейные колебания в дискретных системах со многими степенями свободы	4	4	7	4	опрос, тестовое задание	ОПК-2, ОПК-3, ПК-1
5	Нелинейные колебания в системе с одной степенью свободы	4	4	7	4	опрос, тестовое задание	ОПК-2, ОПК-3, ПК-1

№	Раздел дисциплины	Виды учебной работы, в т.ч. самостоятельная работа студентов, час.		в активной и вной форме	Формы текущего контроля успеваемости	Формируемые компетенции	
п/п	дисциплины	Лекции	Практические занятия	Самостоятель ная работа	Из них часов в активной интерактивной форме	Формы текуп	Формируемы
6	Волны в сплошных средах	8	8	9	8	опрос, тестовое задание	ОПК-2, ОПК-3, ПК-1
	Итого:	32	32	44	32		

4.2. Лекционные занятия, их содержание

Наименование	Содержание		
разделов и тем			
Введение	1 Пекция (2 часа): Разнообразие и единство колебательных явлений различной природы. Универсальность математических моделей колебательных явлений и эффектов в механике, электродинамике, химии, биологии, экологии, экономике и технике. Предмет современной теории колебаний и волн.		
Линейные колебания в дискретных системах с одной степенью свободы	Собственные колебания В консервативной системе. Основные элементы гармонического колебания и колебания энергии. Общее решение однородного линейного дифференциального уравнения. Определение амплитуды, фазы и периода колебаний. Уравнение фазовой траектории. Фазовый портрет колебательной системы. Закон сохранения энергии. Примеры маятников (математический, физический, маятник карманных часов, колебательный контур, резонатор Гельмгольца) В неконсервативной системе (диссипативной). Свободные колебания в диссипативных системах с вязким трением. Коэффициент и время затухания, логарифмический декремент, добротность. Примеры из механики и электромагнетизма. Демпфированный механический осциллятор. Электрический колебательный контур с сопротивлением.		

Наименование	Содержание
разделов и тем	
	4-5. Лекция (4 часа)
	Вынужденные колебания
	Под действием синусоидальной силы в системе без трения.
	Резонанс. Вид колебаний при резонансе.
	Под действием синусоидальной силы в системе с диссипацией
	энергии. Метод комплексных амплитуд и параметров. Анализ
	резонансных законов Амплитуда тока (или скорости). Амплитуда
	смещений (или амплитуда заряда на конденсаторе). Амплитуда
	ускорений (или напряжения на индуктивности). Фаза
	вынужденных колебаний. Частные случаи резонанса (резонанс
	токов и напряжений).
	Действие внешней силы любого вида на линейную
	колебательную систему. Вынужденные колебания с
	произвольной частотой Баллистический режим колебаний Установление колебаний
	6. Лекция (2 часа)
	о. лекция (2 часа) Параметрические колебания .
	Схематический расчет параметрических колебаний. Области
	параметрический расчет параметрических колсоании. Области параметрического резонанса. Уравнения Матье и Хилла.
	Примеры параметрических колебаний. Раскачивание качелей.
	Математический маятник с периодически изменяемой длиной
	подвеса. Электрический колебательный контур с
	периодическими параметрами.
	7. Лекция (2 часа)
	Устойчивость и неустойчивость линейных систем.
	Линеаризованные системы с дискретным спектром.
	Устойчивость по Ляпунову. Устойчивость по Пуассону.
	Локальная и глобальная устойчивость. Механизмы
	неустойчивостей. Положительная обратная связь. Абсолютная и
	конвективная неустойчивость.

Наименование	Содержание			
разделов и тем	0.77(2			
	8 Лекции (2 часа)			
	Собственные колебания.			
	Свободные незатухающие колебания в системах с двумя			
Линейные колебания	степенями свободы. Нормальные колебания (моды).			
в дискретных	Парциальные и нормальные частоты. Биения. Понятие спектра			
системах с двумя	колебаний. Методика анализа колебаний 2-х связанных			
степенями свободы	осцилляторов.			
	Затухание колебаний в системах с двумя степенями свободы.			
	Энергия колебательной системы и ее диссипация.			
	Вынужденные колебания.			
	Действие внешних гармонических сил на систему с двумя			
	степенями свободы без затухания. Вынужденные колебания в			
	системе с двумя степенями свободы без затухания.			
	9 -10 Лекции (4 часа)			
	Собственные колебания			
	Общие свойства линейной колебательной системы со многими			
W	степенями свободы. Собственные колебания в системе без сил			
Линейные колебания	трения. Нормальные координаты. Энергия собственных			
в дискретных	колебаний и энергия нормального колебания. Случай равенства собственных частот системы. Равенство нулю одной или			
системах со многими	нескольких собственных частот. Колебания в системе со			
степенями свободы	многими степенями свободы при наличии затухания.			
	Вынужденные колебания. Колебания в системе со многими степенями свободы без			
	затухания. Вынужденные колебания в системе со многими			
	степенями свободы при наличии трения.			
	11 Лекции (2часа)			
	Собственные колебания			
	Негармонические колебания математического маятника.			
	Затухание колебаний в системах с сухим трением.			
	Энергетический метод решения уравнения колебаний. Метод			
	энергетического баланса.			
11	12 Лекция (2 час)			
Нелинейные	Вынужденные колебания			
колебания в системе	Вынужденные колебания нелинейных осцилляторов без			
с одной степенью	затухания. Постановка задачи и возможность ее решения.			
свободы	Вынужденные колебания нелинейных осцилляторов при			
	наличии затухания.			
	Автоколебания. Структура и принцип действия			
	автоколебательной системы. Системы осцилляторного и			
	накопительного типов. Баланс энергии и фазовый портрет.			
	Общие методы расчета. Примеры автоколебательных систем.			
	Часовой маятник. Ламповый генератор. Маятник Фруда.			

Наименование	Содержание		
разделов и тем			
Волны в сплошных средах	Распространение возмущений в системе с большим числом степеней свободы. Волновые процессы. Скорость распространения. Возбуждение волн. Группа волн и ее скорость. Волновое уравнение. Волны в упругих телах. Поперечные волны. Энергия, переносимая волной. Вектор Умова. Продольные волны. Скорость волн в тонком и толстом стержнях. Отражение и прохождение волн на границах двух сред. Удельное волновое сопротивление. Волны в жидкостях и газах. Волны на поверхности жидкости. Гравитационные волны. Волны глубокой воды. Волны мелкой воды. Характер движения частиц жидкости. Капиллярные волны. Цунами. Внутренние волны. Акустические волны большой амплитуды. Линейный и нелинейный режимы распространения. Уединенные волны (солитоны). Объемные сейсмические волны. Современная модель Земли. Волны Рэлея и Лява.		

4.3 Практические занятия и их содержание

п/п	№ раздела дисциплины	Количество часов	Наименование темы практического занятия
1	1	2	Решение задач на нахождение градиентов, дивергенций и роторов различных скалярных и векторных полей.
2-3		4	Решение задач на основные элементы собственного гармонического колебания и колебания энергии. Общее решение однородного линейного дифференциального уравнения. Определение амплитуды, фазы и периода колебаний. Уравнение фазовой траектории. Фазовый портрет колебательной системы. Закон сохранения энергии.
4-5	2	4	Решение задач на вынужденные колебания под действием синусоидальной силы в системе без трения. Резонанс. Вид колебаний при резонансе. Решение задач на вынужденные колебания под действием синусоидальной силы в системе с диссипацией энергии. Метод комплексных амплитуд и параметров. Анализ резонансных законов Амплитуда тока (или скорости). Амплитуда смещений (или амплитуда заряда на конденсаторе). Амплитуда ускорений (или напряжения на индуктивности). Фаза вынужденных колебаний. Частные случаи резонанса (резонанс токов и напряжений).

,	№ раздела	Количество		
п/п	дисциплины	часов	Наименование темы практического занятия	
6		2	Решение задач на параметрические колебания. Уравнения Матье и Хилла. Примеры параметрических колебаний. Раскачивание качелей. Математический маятник с периодически изменяемой длиной подвеса. Электрический колебательный контур с периодическими параметрами.	
7		2	Оценки устойчивости колебательных систем.	
8	3	2	Решение задач по расчету свободных незатухающих колебаний в системах с двумя степенями свободы. Нормальные колебания (моды). Парциальные и нормальные частоты. Биения. Понятие спектра колебаний. Методика анализа колебаний 2-х связанных осцилляторов.	
9-10	4	4	Решение задач на собственные колебания системы со многими степенями свободы. Нормальные координаты. Энергия собственных колебаний и энергия нормального колебания. Случай равенства собственных частот системы. Равенство нулю одной или нескольких собственных частот.	
11-12	5	4	Рассмотрение задач на энергетический метод решения уравнения нелинейных собственных колебаний. Метод энергетического баланса. Вынужденные колебания нелинейных осцилляторов при наличии затухания. Баланс энергии и фазовый портрет. Общие методы расчета.	
13-14		4	Решение задач на волновые процессы. Определение скорости распространения волн. Группа волн и ее скорость. Волновое уравнение.	
15	6	2	Решение задач на волны в упругих телах. Поперечные волны. Продольные волны. Энергия, переносимая волной. Вектор Умова. Скорость волн в тонком и толстом стержнях. Отражение и прохождение волн на границах двух сред. Удельное волновое сопротивление.	
16		2	Решение задач на волны в жидкостях и газах. Волны на поверхности жидкости. Гравитационные волны. Волны глубокой воды. Волны мелкой воды. Характер движения частиц жидкости. Капиллярные волны. Цунами.	

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ И ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Текущий контроль

Текущий контроль осуществляется в ходе изучения каждой темы дисциплины и по окончании каждого раздела. Система, сроки и виды контроля доводятся до сведения каждого студента в начале занятий по дисциплине. В рамках текущего контроля оцениваются все виды работы студента, предусмотренные учебной программой по дисциплине.

Формами текущего контроля являются:

- экспресс-опрос в виде «летучки» (проводится после каждой лекции во вступительной части практического занятия);
- проверка выполнения заданий на практические занятия (заданий по решению задач);
 - собеседования (индивидуальный опрос) по теме занятия;
 - -письменное тестирование;

Осуществляется в виде опроса на лекциях, практических занятиях, решении тестовых заданий, проверка домашних заданий.

а). Образцы тестовых заданий текущего контроля

ПРИМЕР ТЕСТОВОГО ЗАДАНИЯ ПО КУРСУ ТЕОРИИ КОЛЕБАНИЙ И ВОЛН

Раздел

Линейные колебания в дискретных системах с одной степенью свободы

Система линейна, если

- 1. Дифференциальные уравнения, описывающие ее движение, не содержат нелинейных членов.
- 2. Амплитуда колебаний линейно растет или уменьшается
- 3. Колебания совершаются вдоль одной линии
- 4. Отклик прямо пропорционален вызвавшему воздействию

Разлел

Линейные колебания в дискретных системах с двумя степенями свободы

Могут ли обмениваться энергией нормальные моды колебаний?

- 1. могут, если возбуждаются независимо друг от друга
- 2. не могут, если возбуждаются независимо друг от друга
- 3. не могут никогда
- 4. могут во всех случаях

Раздел

Линейные колебания в дискретных системах со многими степенями свободы

Полное число собственных мод колебательной системы со многими степенями свободы равно

- 1. числу поступательных степеней свободы
- 2. числу колебательных степеней свободы
- 3. числу степеней свободы

4. числу вращательных степеней свободы

Разлел

Нелинейные колебания в системе с одной степенью свободы

Колебания математического маятника следует описывать нелинейным уравнением, если

- 1. угол отклонения маятника от положения равновесия достаточно велик
- 2. при малых углах отклонения маятника от положения равновесия в случае линейно зависящей от величины отклонения возвращающей силы
- 3. колебания математического маятника всегда следует описывать линейным уравнением
- 4. при любых условиях

Раздел

Волны в сплошных средах

Интенсивность акустической волны.....

- 1. зависит от амплитуды колебаний частиц среды
- 2. не зависит от амплитуды колебаний частиц среды
- 3. зависит от квадрата амплитуды колебаний частиц среды
- 4. зависит от квадрата частоты колебаний частиц среды

б) Примерный перечень вопросов для опроса на лекциях и практических занятиях

Введение

1. Разнообразие и единство колебательных явлений различной природы. Универсальность математических моделей колебательных явлений и эффектов в механике, электродинамике, химии, биологии, экологии, экономике и технике. Предмет современной теории колебаний и волн.

Раздел

Линейные колебания в дискретных системах с одной степенью свободы

Собственные колебания

- 2. В консервативной системе. Основные элементы гармонического колебания и колебания энергии. Общее решение однородного линейного дифференциального уравнения.
- 3. Определение амплитуды, фазы и периода колебаний. Уравнение фазовой траектории. Фазовый портрет колебательной системы.
- 4. Закон сохранения энергии. Примеры маятников (математический, физический, маятник карманных часов, колебательный контур, резонатор Гельмгольца)
- 5. В неконсервативной системе (диссипативной). Свободные колебания в диссипативных системах с вязким трением. Коэффициент и время затухания, логарифмический декремент, добротность. Примеры из механики и электромагнетизма. Демпфированный механический осциллятор. Электрический колебательный контур с сопротивлением.

Вынужденные колебания

- 6. Под действием синусоидальной силы в системе без трения. Резонанс. Вид колебаний при резонансе.
- 7. Под действием синусоидальной силы в системе с диссипацией энергии. **Метод комплексных амплитуд и параметров**. Анализ резонансных законов Амплитуда тока (или скорости). Амплитуда смещений (или амплитуда заряда на конденсаторе). Амплитуда ускорений (или напряжения на индуктивности). Фаза вынужденных колебаний. Частные случаи резонанса (резонанс токов и напряжений).
- 8. Действие внешней силы любого вида на линейную колебательную систему. Вынужденные колебания с произвольной частотой. Баллистический режим колебаний Установление колебаний

Параметрические колебания.

9. Схематический расчет параметрических колебаний. Области параметрического резонанса. **Уравнения Матье и Хилла. Примеры параметрических колебаний.** Раскачивание качелей. Математический маятник с периодически изменяемой длиной подвеса. Электрический колебательный контур с периодическими параметрами.

Устойчивость и неустойчивость линейных систем.

10. Линеаризованные системы с дискретным спектром. Устойчивость по Ляпунову. Устойчивость по Пуассону. Локальная и глобальная устойчивость. Механизмы неустойчивостей. Положительная обратная связь. Абсолютная и конвективная неустойчивость.

Раздел

Линейные колебания в дискретных системах с двумя степенями свободы

Собственные колебания.

- 11. Свободные незатухающие колебания в системах с двумя степенями свободы. Нормальные колебания (моды). Парциальные и нормальные частоты. Биения. Понятие спектра колебаний. Методика анализа колебаний 2-х связанных осцилляторов.
- 12. Затухание колебаний в системах с двумя степенями свободы. Энергия колебательной системы и ее диссипация.

Вынужденные колебания.

13. Действие внешних гармонических сил на систему с двумя степенями свободы без затухания. Вынужденные колебания в системе с двумя степенями свободы без затухания.

Раздел

Линейные колебания в дискретных системах со многими степенями свободы

Собственные колебания

14. Общие свойства линейной колебательной системы со многими степенями свободы. Собственные колебания в системе без сил трения. Нормальные координаты. Энергия собственных колебаний и энергия нормального колебания. Случай равенства собственных частот системы. Равенство нулю одной или нескольких собственных частот. Колебания в системе со многими степенями свободы при наличии затухания.

Вынужденные колебания.

15. Колебания в системе со многими степенями свободы без затухания. Вынужденные колебания в системе со многими степенями свободы при наличии трения.

Раздел Нелинейные колебания в системе с одной степенью свободы

Собственные колебания

16. Негармонические колебания математического маятника. Затухание колебаний в системах с сухим трением. Энергетический метод решения уравнения колебаний. Метод энергетического баланса.

Вынужденные колебания

- 17. Вынужденные колебания нелинейных осцилляторов без затухания. Постановка задачи и возможность ее решения. Вынужденные колебания нелинейных осцилляторов при наличии затухания.
- 18. Автоколебания. Структура и принцип действия автоколебательной системы. Системы осцилляторного и накопительного типов. Баланс энергии и фазовый портрет. Общие методы расчета. Примеры автоколебательных систем. Часовой маятник. Ламповый генератор. Маятник Фруда.

Раздел Волны в сплошных средах

- 19. Распространение возмущений в системе с большим числом степеней свободы. Волновые процессы. Скорость распространения. Возбуждение волн. Группа волн и ее скорость. Волновое уравнение.
- 20. Волны в упругих телах. Поперечные волны. Энергия, переносимая волной. Вектор Умова. Продольные волны. Скорость волн в тонком и толстом стержнях. Отражение и прохождение волн на границах двух сред. Удельное волновое сопротивление.
- 21. Волны в жидкостях и газах. Волны на поверхности жидкости. Гравитационные волны. Волны глубокой воды. Волны мелкой воды. Характер движения частиц жидкости. Капиллярные волны. Цунами.
- 22. Внутренние волны. Акустические волны большой амплитуды. Линейный и нелинейный режимы распространения. Уединенные волны (солитоны). Объемные сейсмические волны. Современная модель Земли. Волны Рэлея и Лява.

5.2. Методические указания по организации самостоятельной работы

Самостоятельная работа студентов является составной частью учебной работы и имеет целью закрепление и углубления полученных знаний и навыков, поиск и приобретение новых знаний, а также выполнение учебных заданий, подготовку к предстоящим занятиям, зачетам и экзаменам.

Самостоятельная работа предусматривает, как правило, прочтение предыдущего лекционного материала, выполнение домашних заданий, вычислительных работ, подготовку к практическим занятиям. Необходимые для самостоятельной работы материалы перечислены в п.6 –учебно-методическое и информационное обеспечение лиспиплины

5.3. Промежуточный контроль	Экзамен	

Промежуточная аттестация проводится в форме устного экзамена в традиционной форме по графику промежуточной аттестации

ОБРАЗЕЦ ЭКЗАМЕНАЦИОННОГО БИЛЕТА ПО ТЕОРИИ КОЛЕБАНИЙ И ВОЛН

Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования промете образования промет

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

03.03.02 – Физика (академический бакалавриат)

Экзаменационный билет № 1 Дисциплина «ТЕОРИЯ КОЛЕБАНИЙ И ВОЛН»

- 1. Основные элементы гармонического колебания и колебания энергии. Общее решение однородного линейного дифференциального уравнения.
- 2. Волны в упругих телах. Поперечные волны. Энергия, переносимая волной. Вектор Умова. Продольные волны.
- 3. Движение тела задано уравнением $x(t) = t^2 + t + 1$. Нарисовать фазовый портрет этого движения.

Экзаменатор
Заведующий кафедрой физики
Протокол заседания кафедры № 2018 г.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Рекомендуемая литература

- а) Основная литература:
- 1. *Трубецков Д.И.*, *Рожнев А.Г*. Линейные колебания и волны. –М.: Физматлит, 2001, 416 с.
- 2. *Кузнецов А.П.*, *Рожнев А.Г.*, *Трубецков Д.И*. Линейные колебания и волны (Сборник задач).- М.: Физматлит, 2001, 148 С.
- 3. *Ю.Н. ДубнищевЮ.Н.*. Колебания и волны. 2-е изд., Изд-во «Лань», 2011, 384 с.
- 4. Горелик Г.С. Колебания и волны.: Изд-во «Физматлит», 3-е изд., 2007, 656 с.
- 5. *Алешкевич В.А.*, *Деденко Л.Г.*, *Караваев В.А*.Колебания и волны. Лекции. (Физический факультет МГУ) Издательство Физического факультета МГУ, 2001 г.
- 6. *Рабинович М.И.*, *Трубецков Д.И*. Введение в теорию колебаний и волн. М.:Наука, 1984
- 7. *Кузнецов А.П., Кузнецов С.П., Рыскин Н.М.* Нелинейные колебания. Учеб.пос.для вузов.- М.: Физматлит, 2005, 292 С.
- 8. *Иродов И.Е.* Задачи по общей физике. Учеб. пособие для вузов .-5-е изд., испр. -М.: Лаборатория базовых Знаний, 2003.- 432 с.
 - б) дополнительная литература:

- 1. *Фейман Р., Лейтон Р., Сэнс М.* Фейнмановские лекции по физике. т.2 Пространство, время, движение. Пер. с англ. М.: Мир, 1977. 168 с.
- 2. Сивухин Д.В. Механика: Учеб. пособие для вузов. 3-е изд., испр. и доп. М.: Наука, 1989. 576 с.
- 3. Сивухин Д.В. Электричество: Учеб. пособие для вузов. –М, 1977. 688 с.: ил.
- 4. Трофимова Т.И. Курс физики: Учеб. пособие для вузов. 7-е изд., стер. М.: Высш. ик., 2001. 542 с.: ил.

в) программное обеспечение и Интернет-ресурсы:

Пакет MS Office, образовательные ресурсы Интернета.

- 1. http://pskgu.ru/ebooks/okphyzikc.html Учебные пособия по общей физике.
- 2. http://lectoriy.mipt.ru/lecture?category=Physics&lecturer Видеолекции и открытые образовательные материалы ФизТеха. Лекции по Физике.
- 3. http://feynmanlectures.caltech.edu/- The Feynman Lectures on Physics
- 4. http://pskgu.ru/ebooks/tf.html . Теоретическая Физика.
- 5. http://physics.nad.ru/ физика в анимациях
- 6. http://dmitryukts.narod.ru/kopilka/video.html- опыты по физике.
- 7. https://sites.google.com/site/rggmustud/ Актуальная информация для студентов, проходящих обучение физике в РГГМУ.

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Вид учебных занятий	Организация деятельности студента
Лекции	В ходе лекционных занятий необходимо вести конспектирование учебного материала. Обращать внимание на формулировки физических законов, процессов, явлений. Подробно записывать математические выводы формул. Желательно оставить в рабочих конспектах поля, на которых делать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений.
Практические занятия	Практическое занятие — это занятие, проводимое под руководством преподавателя в учебной аудитории, направленное на углубление научно- теоретических знаний и овладение определенными методами самостоятельной работы. В процессе таких занятий вырабатываются практические умения. Перед практическим занятием следует изучить конспект лекции и рекомендованную литературу, обращая внимание на практическое применение теории и на методику решения типовых задач, решить задачи заданные на дом (не менее пяти типовых задач). Главным содержанием практических занятий является активная работа каждого студента по применению физических понятий, законов и моделей к конкретным задачам, в том числе прикладного характера. На практическом занятии главное — уяснить связь решаемых задач с теоретическими положениями. Для закрепления навыков дома решаются задачи, заданные преподавателем по пройденной теме. Для ведения записей на практических занятиях обычно заводят отдельную тетрадь. Для закрепления полученных практических

Внеаудиторная работа	навыков после изучения темы проводится тестирование. Тестовые задания выполняются в виде решения индивидуальных задач во внеаудиторное время и сдаются преподавателю на проверку. Проверенные тесты хранятся у преподавателя до завершения изучения дисциплины. Логическая связь лекций и практических занятий заключается в том, что информация, полученная на лекции, в процессе самостоятельной работы на практическом занятии осмысливается и перерабатывается, при помощи преподавателя анализируется до мельчайших подробностей, после чего прочно усваивается. представляет собой вид занятий, которые каждый студент организует и планирует самостоятельно. Самостоятельная работа студентов включает: — самостоятельное изучение разделов дисциплины; —подготовку к практическим занятиям, решение индивидуальных задач; — выполнение дополнительных индивидуальных творческих заданий;
Подготовка к экзамену, зачету	Экзамен имеет целью проверить и оценить уровень теоретических знаний, умение применять их к решению практических задач, а также степень овладения практическими умениями и навыками в объеме требований учебных программ. Подготовка к экзамену предполагает изучение конспектов лекций, рекомендуемой литературы и других источников, повторение материалов практических занятий. К экзамену допускаются студенты, выполнившие все требования учебной программы.

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, ИСПОЛЬЗУЕМЫЕ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ (ПРИ НЕОБХОДИМОСТИ)

	Образовательные и	Перечень программного
Тема (раздел) дисциплины	информационные	обеспечения и
тема (раздел) дисциплины	технологии	информационных
		справочных систем
	Лекции, самостоятельная	Microsoft Windows
Вазгод 1 Врадомия	работа студентов	Microsoft Office:Word, Excel
Раздел 1. Введение.		PowerPoint; ЭБС РГГМУ
		https://bibliotech.esstu.ru

	п	N 4' C. XXI' 1
	Лекции, практические	Microsoft Windows
Раздел 2. Линейные	занятия, практические	Microsoft Office:Word, Excel
колебания в дискретных	задания (домашние задачи),	PowerPoint;
системах	собеседование,	ЭБС РГГМУ
с одной степенью свободы	тестирование	https://bibliotech.esstu.ru
	самостоятельная работа	
	студентов	
Danzas 2 Harrassas	Лекции, практические	Microsoft Windows
Раздел 3. Линейные	занятия, практические	Microsoft Office:Word, Excel
колебания в дискретных	задания (домашние задачи),	PowerPoint;
системах	собеседование,	ЭБС РГГМУ
с двумя степенями	тестирование	https://bibliotech.esstu.ru
свободы	самостоятельная работа	
	студентов	
	Лекции, практические	Microsoft Windows
Раздел 4. Линейные	занятия, практические	Microsoft Office:Word, Excel
колебания в дискретных	задания (домашние задачи),	PowerPoint;
системах	собеседование,	ЭБС РГГМУ
со многими степенями		https://bibliotech.esstu.ru
свободы	тестирование	ittps://bibliotech.esstu.ru
	самостоятельная работа	
	студентов	Mi ana a st Windows
	Лекции, практические	Microsoft Windows
Раздел 5. Нелинейные	занятия, практические	Microsoft Office:Word, Excel
колебания в системе с	задания (домашние задачи),	PowerPoint;
одной степенью свободы	собеседование,	ЭБС РГГМУ
	тестирование	https://bibliotech.esstu.ru
	самостоятельная работа	
	студентов	
	Лекции, практические	Microsoft Windows
	занятия, практические	Microsoft Office:Word, Excel
Раздел 6. Волны в	задания (домашние задачи),	PowerPoint;
' '	собеседование,	ЭБС РГГМУ
сплошных средах	тестирование	https://bibliotech.esstu.ru
	самостоятельная работа	
	студентов	
	J11 -	

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ дисциплины

- 1. Учебные поточные аудитории;

- Аудитория для самостоятельной работы
 Мультимедийная техника и презентации.
 Электронно-библиотечная система РГГМУ https://bibliotech.esstu.ru