Федеральное государственное бюджетное образовательное учреждение высшегообразования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра Экспериментальной физики атмосферы

Рабочая программа по дисциплине ГЕОФИЗИЧЕСКАЯ ГИДРОДИНАМИКА

Основная профессиональная образовательная Программа высшего образования программы бакалавриата по направлению подготовки 05.03.05 – Прикладная гидрометеорология Профиль – прикладная океанология

Квалификация (степень) – Бакалавр академический

Форма обучения **Очная/заочная**

Согласовано Руководитель ОПОП Изаре В.А.Царев	Утверждаю Председатель УМС <u>Умещее</u> И.И. Палкин
	Рекомендована решением
	Учебно-методического совета
	Рассмотрена и утверждена на заседании кафедры <u>50, 05</u> 2019 г., протокол № <u>9</u>
	Зав. кафедрой 1 Ендзнеедов А. Д.
	Автор-разработчик:
	1 VV - WI

Санкт– Петербург 2019

1. Цели освоения дисциплины

Цель освоения дисциплины «Геофизическая гидродинамика» – подготовка бакалавров, владеющих глубокими теоретическими знаниями и практическими навыками в объеме, необходимом для анализа физических взаимосвязей между параметрами изучаемых гидродинамических процессов в атмосфере и в океане и причинами, их определяющими, с учётом особенностей, обусловленных такими факторами, как вращение Земли, плотностная стратификация, трение и орография.

Основная задача дисциплины «Геофизическая гидродинамика» связана с освоением студентами:

- теоретических основ математического описания гидродинамических процессов во вращающейся системе координат;
- теоретических принципов упрощения уравнений в задачах по изучению гидродинамических явлений с различными характерными масштабами, свойственными динамике атмосферных и океанических движений;
- результатов анализа взаимосвязей между параметрами составных элементов сложной структуры течений в атмосфере и в океанах и упомянутыми выше геофизическими факторами;
- практических навыков решения задач по определению конкретных значений физических параметров в различных гидрометеорологических явлениях.

2.Место дисциплины в структуре ОПОП

Дисциплина «Геофизическая гидродинамика» для направления подготовки 05.03.05. – Прикладная гидрометеорология по профилю подготовки «Прикладная океанология» относится к дисциплинам вариативной части образовательной программы.

Для освоения данной дисциплины, обучающиеся должны освоить разделы дисциплин: «Математика», «Физика», «Информатика», «Вычислительная математика», «Теория вероятности и математическая статистика», «Геофизика», «Физика океана», «Теоретическая механика», «Гидромеханика».

Дисциплина «Геофизическая гидродинамика» является базовой для изучения дисциплин: «Экология», «Динамическая метеорология», «Динамика океана», «Морские гидрологические прогнозы», «Численные методы математического моделирования», «Статистические методы анализа гидрометеорологической информации», «Моделирование морских экосистем», «Математические методы решения океанологических задач».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Код	Компетенция
компетенции	
ОПК-1	Способность представить современную картину мира на основе
	знаний основных положений, законов и методов естественных наук,
	физики и математики.
ОПК-3	Способность анализировать и интерпретировать данные натурных и
	лабораторных наблюдений, теоретических расчетов и моделирования.
ПК-1	Способность понимать разномасштабные явления и процессы в
	атмосфере, океане и водах суши и способность выделять в них
	антропогенную составляющую

В результате освоения компетенций в рамках дисциплины «Геофизическая гидродинамика» обучающийся должен:

Знать:

- причины, приводящие к особенностям проявления основных физических законов в динамических и термических процессах в атмосфере и океане на вращающейся Земле;
 - наиболее характерные типы движений в атмосфере и в океане;
- взаимосвязи между параметрами наиболее характерных процессов и факторами, их определяющими.

Уметь:

- применить принцип упрощения и выбрать нужную форму уравнений для описания отдельных типов движений;
- объяснить физический механизм и определить условия существования и развития различных гидродинамических процессов.

Владеть:

- знаниями о перспективных направлениях развития и возможностях использования механики жидкости и газа при решении основных и прикладных задач;
- навыками использования полученных результатов при анализе физических процессов и явлений, происходящих в системе Земля атмосфера.

Основные признаки проявленности формируемых компетенций в результате освоения дисциплины «Геофизическая гидродинамика» сведены в таблице.

Соответствие уровней освоения компетенции планируемым результатам обучения и критериям их оценивания

Этап	Планируемые		Критерии оценивания резул	ьтатов обучения	
(уровень)	результаты обучения		F of the first		
освоения	(показатели	2	3	4	5
компетенц	достижения заданного	_	минимальный	- базовый	продвинутый
ии	уровня освоения				F - 77
	компетенций)				
Второй этап	Владеть:	Не владеет:	Слабо владеет:	Хорошо владеет:	Уверенно владеет:
(уровень)	- знаниями о возможностях				
ОПК-1	использования механики				
	жидкости и газа при				
	решении основных и				
	прикладных задач;				
	Уметь:	Не умеет:	Затрудняется:	Хорошо умеет:	Отлично умеет:
	- применять физические				
	законы для анализа				
	атмосферных процессов;				
	Знать:	Не знает:	Плохо знает:	Хорошо знает:	Отлично знает:
	- основные физические				
	законы в динамических и				
	термических процессах в				
	атмосфере и океане на				
	вращающейся Земле;				
	- наиболее характерные				
	типы движений в атмосфере				
	и в океане				
Второй этап	Владеть:	Не владеет:	Слабо владеет:	Хорошо владеет:	Уверенно владеет:
(уровень)	- навыками использования				
ОПК-3	полученных результатов				
	при анализе физических				
	процессов и явлений,				
	происходящих в системе				
	Земля – атмосфера;				
	Уметь:	Не умеет:	Затрудняется:	Хорошо умеет:	Отлично умеет:
	- применить принцип				
	упрощения и выбрать				
	нужную форму уравнений				

	для описания отдельных типов движений;				
	Знать:	Не знает:	Плохо знает:	Хорошо знает:	Отлично знает:
	- наиболее характерные				
	типы движений в	типы движений в атмосфере			
	атмосфере и в океане;	и в океане;	и в океане;	и в океане;	и в океане;
Первый этап	Владеть:	Не владеет:	Слабо владеет:	Хорошо владеет:	Уверенно владеет:
(уровень)	- методикой расчета				
ПК-1	основных	основных	основных	основных	основных
	метеорологических	метеорологических	метеорологических	метеорологических	метеорологических
	параметров по данным				
	метеорологических	метеорологических	метеорологических	метеорологических	метеорологических
	измерений;	измерений;	измерений;	измерений;	измерений;
	- навыками использования				
	полученных результатов				
	при анализе физических				
	процессов и явлений,				
	происходящих в системе				
	Земля – атмосфера				
	Уметь:	Не умеет:	Затрудняется:	Хорошо умеет:	Отлично умеет:
	- объяснить физический				
	механизм условий				
	существования и развития				
	различных	различных	различных	различных	различных
	гидродинамических	гидродинамических	гидродинамических	гидродинамических	гидродинамических
	процессов;	процессов;	процессов;	процессов;	процессов;
	Знать:	Не знает:	Плохо знает:	Хорошо знает:	Отлично знает:
	- взаимосвязи между				
	параметрами наиболее				
	характерных процессов и				
	факторами, их				
	определяющими;	определяющими;	определяющими;	определяющими;	определяющими;
	- причины, приводящие к				
	особенностям проявления				
	основных физических				
	законов в динамических и				
	термических процессах в				
	атмосфере и океане на				
	вращающейся Земле				

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часа.

Объём дисциплины	Все	его часов
	Очная форма обучения	Заочная форма обучения
	2019 г. набора	2019 г. набора
Общая трудоёмкость дисциплины	108	часов
Контактная работа	60	12
обучающихся с преподавателями		
(по видам аудиторных учебных		
занятий) – всего:		
в том числе:		
лекции	14	4
практические занятия	14	4
лабораторные занятия	14	4
Самостоятельная работа	66	96
(СРС) – всего:		
в том числе:	•	
контрольная работа	-	+
Вид промежуточной	зачет	зачет
аттестации (зачет/экзамен)		

4.1. Структура дисциплины

Очное обучение 2019 г. набора

№	Раздел дисциплины		сам	бной р в т.ч	ельная га		активной или вной форме	
п/п	Раздел дисциплины	Ce	Лекции	Лаб. и практич.раб оты	Самостоятел ьная работа	Форма текущего контроля успеваемости	Занятий в акти интерактивной	Формируем компетенции
1	Основные уравнения динамики жидкости на вращающейся Земле и их анализ		2	2	2	Вопросы и ответы в баллах	1	ОПК-1
2	Уравнения гидродинамики для турбулентного течения	4	2	2	4	Вопросы и ответы в баллах	1	ОПК-1
3	Подобие гидродинамических движений на вращающейся Земле		2	2	8	Вопросы и ответы в баллах	1	ОПК-1 ОПК-3 ПК-1

4	Простейшие типы движений жидкости при отсутствии трения		2	10	10	Вопросы и ответы в баллах, контрольное расчетное задание	1	ОПК-1 ОПК-3 ПК-1
5	Вихревая динамика	4	0	2	8	Вопросы и ответы в баллах	1	ОПК-1 ОПК-3 ПК-1
6	Волны в геофизических средах	4	2	4	10	Вопросы и ответы в баллах	1	ОПК-1 ОПК-3 ПК-1
7	Планетарные пограничные слои (ППС)	4	2	4	10	Вопросы и ответы в баллах	1	ОПК-1 ОПК-3 ПК-1
8	Циркуляционные процессы в атмосфере и в океане	4	0	2	6	Вопросы и ответы в баллах	1	ОПК-1 ОПК-3 ПК-1
9	Баротропная неустойчивость геострофических потоков и гравитационных волн		2	0	8	Опрос	1	ОПК-1 ОПК-3 ПК-1
10	Особенности крупномасштабной структуры океанических течений	4	2	0	8	Опрос	1	ОПК-1 ОПК-3 ПК-1
	Итого		14	28	66		10	
С учёт	ом трудозатрат при подготовке и сдаче зачета	вке и 108 часов						

Заочное обучение 2019 г. набора

№ п/п	Раздел дисциплины	Kypc	сам	бной р в т.ч	ельная га	Форма	в активной или авной форме	Формируемые компетенции
11/11			Лекции	Лаб. и практич.раб оты	Самостоятел ьная работа	текущего контроля успеваемости	Занятий в акти интерактивной	Фор
1	Основные уравнения динамики жидкости на вращающейся Земле и их анализ		0	0	10	Опрос	0	ОПК-1
2	Уравнения гидродинамики для турбулентного течения	4	2	2	12	Опрос, задание в контрольной работе	1	ОПК-1
3	Подобие гидродинамических движений на вращающейся Земле		0	2	10	Опрос	0	ОПК-1 ОПК-3 ПК-1

4	Простейшие типы движений жидкости при отсутствии трения	4	2	2	16	Опрос, задания в контрольной работе	0	ОПК-1 ОПК-3 ПК-1
5	Вихревая динамика	4	0	0	12	Опрос	0	ОПК-1 ОПК-3 ПК-1
6	Волны в геофизических средах	4	0	0	12	Опрос	0	ОПК-1 ОПК-3 ПК-1
7	Планетарные пограничные слои (ППС)	4	0	0	8	Опрос	1	ОПК-1 ОПК-3 ПК-1
8	Циркуляционные процессы в атмосфере и в океане	4	2	0	6	Опрос	0	ОПК-1 ОПК-3 ПК-1
9	Баротропная неустойчивость	4	0	0	6	Опрос	0	ОПК-1 ОПК-3 ПК-1
10	Особенности крупномасштабной структуры океанических течений	4	0	0	4	Опрос	0	ОПК-1 ОПК-3 ПК-1
	Итого		4	8	96		2	
Суч	С учётом трудозатрат при подготовке и сдаче зачета					108 часов		

4.2. Содержание разделов дисциплины

4.2.1 Основные уравнения динамики жидкости и их анализ

Уравнения движения и неразрывности как отражение законов сохранения количества движения и массы. Реальные силы, действующие в жидкости. Абсолютная и относительная скорость. Связь скоростей и ускорений в неподвижной и вращающейся системах координат. Ускорение Кориолиса. Сила тяжести и сила Кориолиса. Уравнения движения во вращающейся системе координат. Традиционные приближения для силы Кориолиса.

Уравнения движения в сферической системе координат, связанной с вращающейся Землёй.

Закон сохранения энергии. Уравнение притока тепла. Уравнения переноса других субстанций. Уравнение состояния.

Уравнение статики, его следствия. Геопотенциал и его изменения.

Квазистатические вертикальные перемещения элементов среды и их термодинамические эффекты. Потенциальная температура, её сохранение.

Стратификация. Критерии статической устойчивости, частота Вайсяля-Брента...

4.2.2 Уравнения гидродинамики для турбулентного течения

Турбулентное движение, средние величины и флуктуации. Приближение Буссинеска. Осреднение физических полей в турбулентном потоке. Осреднение уравнений движения, неразрывности, переноса тепла, водяного пара и примеси. Турбулентные потоки и притоки различных субстанций.

4.2.3 Подобие гидродинамических движений на вращающейся Земле

Характерные масштабы явлений и физических величин. Безразмерные величины. Приведение уравнений к безразмерному виду. Безразмерные комплексы и критерии подобия.

Принцип упрощения уравнений. Классификация движений по характерным масштабам и критериям подобия. Особенности динамики движений в экваториальной зоне.

4.2.4 Простейшие типы движений жидкости при отсутствии трения

Геострофическое движение. Градиентное движение по криволинейным изобарам. Особенности антициклонических систем. Циклострофическое движение. Инерционные движения, круги инерции.

Изменение горизонтального барического градиента и геострофического движения с высотой.

Поверхности раздела, основные свойства. Наклон поверхности раздела.

4.2.5 Вихревая динамика

Уравнения теории мелкой воды. Интегральные соотношения. Абсолютный и относительный вихрь скорости. Уравнение переноса вихря. Факторы, приводящие к изменению относительного вихря. Условие сохранения абсолютного вихря. Потенциальный вихрь.

4.2.6 Волны в геофизических средах

Колебания частиц в поле силы Кориолиса. Гравитационные колебания частиц среды в стратифицированной среде. Уравнения линейной теории волн. Звуковые волны. Гравитационные волны в стратифицированной среде. Волны на поверхности раздела. Асимптотические формулы для фазовой скорости гравитационных волн на поверхности «мелкого» моря и океана бесконечной глубины.

Влияние вращения Земли на гравитационные волны. Инерционные волны Россби, их фазовая и групповая скорости. Волны Россби в зональном потоке. Стационарные волны Россби. Орографические волны, волны Кельвина.

4.2.7 Планетарные пограничные слои (ППС)

Пограничные слои в океане и в атмосфере, их вертикальные и горизонтальные масштабы. Уравнения движения для стационарного, горизонтально однородного ППС. Упрощения К-теории турбулентности, связь турбулентных потоков различных субстанций с вертикальным распределением их средних величин. Распределение скорости и сил по высоте в верхнем слое океана и в пограничном слое атмосферы, толщина ППС. Роль силы трения в формировании вертикальных упорядоченных скоростей.

4.2.8 Циркуляционные процессы в атмосфере и в океане

Теорема Кельвина для ускорения циркуляции по замкнутому жидкому контуру Факторы, приводящие к ускорению циркуляции по замкнутому контуру.. Бароклинность, её роль в формировании циркуляционных процессов. Влияние вращения Земли на изменение циркуляции. Влияние трения. Совместный эффект бароклинности и вращения Земли в атмосфере. Основной характер переноса воздушных масс в средних широтах и в экваториальной зоне.

4.2.9 Баротропная неустойчивость

Неустойчивость гравитационных волн в среде с вертикальным сдвигом скорости. Влияние меридионального сдвига скорости на устойчивость зонального потока.

4.2.10 Особенности крупномасштабной структуры океанических течений

Западные пограничные слои, влияние рельефа дна. Экваториальные противотечения.

4.3. Семинарские, практические, лабораторные занятия, их содержание

№ п/п	№ раздела дисциплины	Тематика практических занятий	Форма проведения	Формируемы е компетенции
1	1	Дифференциальные характеристики метеорологических полей	Выполнение расчетов	ОПК-3
2	2	Кинематические характеристики потока	Выполнение расчетов	ОПК-3, ПК-1
3	3,4	Связь между индивидуальной, локальной и конвективной производными	Выполнение расчетов	ОПК-1, ОПК-3 ПК-1
4	4	Геострофическое, градиентное и инерционное движение	Выполнение расчетов	ОПК-1, ОПК-3 ПК-1
5	5	Динамика вихря	Выполнение расчетов	ОПК-1, ОПК-3 ПК-1
6	6	Гравитационные волны	Выполнение расчетов	ОПК-1, ОПК-3 ПК-1
7	6	Планетарные волны Россби	Выполнение расчетов	ОПК-1, ОПК-3 ПК-1
8	7	Спираль Экмана	Выполнение расчетов	ОПК-1, ОПК-3 ПК-1
9	8	Расчёт скорости циркуляций	Выполнение расчетов	ОПК-1, ОПК-3 ПК-1

5. Учебно-методическое обеспечение самостоятельной работы студентов и оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

5.1. Текущий контроль

Устный контроль в процессе занятий (опрос).

Тестовый контроль.

Контрольные расчетные задания по основным темам курса.

Контрольная работа для студентов, обучающихся по заочной форме.

5.1.1.. Образцы заданий текущего контроля

а) Образцы заданий тестового контроля

- 1.Сила Кориолиса пропорциональна:
- а) скалярному произведению вектора скорости и вектора вращения Земли вокруг собственной оси;
 - б) векторному произведению вектора вращения Земли и силы тяжести;
 - в) векторному произведению скорости движения и вектору вращения Земли;
 - г) скалярному произведению относительного вихря и вектора вращения Земли.

(Правильный ответ – в)

- 2. Циклоническая система в северном полушарии характеризуется
 - а) низким давлением в центре и вращательным движением по часовой стрелке;
 - б) высоким давлением в центре и вращательным движением по часовой стрелке;
 - в) низким давлением в центре и вращательным движением против часовой стрелки;
 - г) высоким давлением в центре и вращательным движением против часовой стрелки. (Правильный ответ в)

б) Образцы контрольных расчетных заданий по основным темам курса

Расчёт квазигеострофических скоростей, их изменений с высотой и адвективных изменений.

<u>Задача 1.</u> На карте приземного давления расстояние между прямолинейными параллельными изобарами 1.7 см. Вектор горизонтального градиента давления направлен на ССЗ. Горизонтальный градиент температуры отклоняется от горизонтального градиента давления на угол -30° . Расстояние между единичными изотермами на карте равно 1.1 см. Масштаб карты $M=1:1.5\times10^{7}$. Средняя температура слоя 280 К. Плотность воздуха 1.3 кг/м³. Широта места 65° .

Определить скорость и направление геострофического ветра на уровнях 1 км и 3 км, а также геострофическую адвекцию температуры за час на нижнем из них. Выполнить рисунок.

<u>Задача 2.</u>Найти высоту, на которой геострофический ветер имеет минимальное значение, определить величину и направление ветра на этой высоте, если на уровне 500 м геострофический ветер 103 и равен 14 м/c,а горизонтальный градиент температуры, равный 1.2 K/100 km, отклонен от вектора ветра на угол -210° . Средняя температура слоя 285 K. Широта места 70° .

Определить геострофическую адвекцию температуры за час на высоте минимального ветра. Выполнить рисунок.

Расчёт параметров волн.

Задача 1. Определить различие значений фазовой скорости гравитационных волн длиной λ =50 метров на поверхности океана при условиях λ /h<<1 и λ /h>>1.

Задача 2. Определить фазовую и групповую скорости инерционных волн в среднем западно-восточном потоке, имеющему скорость 20 градусов долготы за сутки, если широта места 45 градусов, а длина волны 60 градусов долготы.

в) Образцы заданий контрольной работы для заочной формы обучения

<u>Задача 2.</u> У земли геострофический ветер юго-восточный, 10 м/с. На высоте 6 км ветер южный и достигает минимума. Найти геострофический ветер и геострофическую адвекцию температуры на высоте 3 км. Температура на этом уровне равна 273 К, широта

места 45°. Горизонтальный градиент температуры не меняется с высотой.

Задача 4. В теплой воздушной массе, имеющей температуру 22°С и расположенной западнее меридионально-ориентированного фронта, ветер северо-западный 8 м/с. В холодной воздушной массе с температурой 12°С ветер юго-юго-западный. Определить скорость ветра в холодной воздушной массе, наклон поверхности раздела к плоскости горизонта, скорость перемещения фронта и вертикальную скорость на поверхности раздела в теплой воздушной массе, если в холодной воздушной массе вертикальные токи отсутствуют. Широта места 60°.

5.2. Методические указания по организации самостоятельной работы

В течение семестра студент обязан самостоятельно прорабатывать материал, изложенный на лекциях, для чего рекомендуется использовать сделанные на лекциях конспекты, изучить основную и дополнительную литературу, презентации лекций и практических работ. Освоение материала и выполнение практических работ проходит при регулярных консультациях с преподавателем, для чего студенту предоставлена возможность использовать удаленный доступ (Интернет).

5.3. Промежуточный контроль: зачет

На зачете от студента требуется ответить на теоретические вопросы.

Перечень вопросов к зачету

- 1. Законы сохранения импульса и массы, их следствия (уравнения гидродинамики). Реальные силы, действующие в сплошной среде.
- 2. Связь изменений произвольного вектора в неподвижной и вращающейся системах координат.
- 3. Связь ускорений в неподвижной и вращающейся системе координат.
- 4. Центробежная сила вращения Земли, её проявление. Сила тяжести.
- 5. Сила Кориолиса, её проявление.
- 6. Баланс сил в статических условиях, основные следствия.
- 7. Геопотенциал, его связь с давлением.
- 8. Связь между горизонтальным барическим градиентом, наклоном изобарических поверхностей и горизонтальным градиентом геопотенциала изобарических поверхностей.
- 9. Связь изменений абсолютного и относительного геопотенциалов изобарических поверхностей с изменениями давления и температуры.
- 10. Первое начало термодинамики, уравнение притока тепла. Уравнение состояния для атмосферы и океана.
- 11. Изменение температуры в частице воздуха при её вертикальных квазистатических перемещениях.
- 12. Связь между температурой и давлением в частице воздуха при адиабатических процессах. Потенциальная температура.
- 13. Связь между изменениями по вертикали абсолютной и потенциальной температур. Преобразование уравнения притока тепла с использованием потенциальной температуры.
- 14. Условия вертикальной статической устойчивости индивидуальной частицы (в океане и в атмосфере) и самой среды. Критерии устойчивости.
- 15. Турбулентность: понятие и условия возникновения.

- 16. Осреднение физической величины в турбулентном потоке. Выбор периода осреднения. Спектр атмосферных движений.
- 17. Правила осреднения физических величин.
- 18. Приведение уравнений переноса различных субстанций к дивергентной форме. Осреднение уравнений.
- 19. Тензор турбулентных касательных напряжений и турбулентные потоки других субстанций. Связь между турбулентными потоками и полями средних величин.
- 20. Характерные масштабы, безразмерные функции.
- 21. Приведение уравнения движения к безразмерному виду. Критерии подобия.
- 22. Классификация атмосферных движений. Спектр атмосферных движений.
- 23. Условия упрощения уравнений для стационарных, горизонтально-однородных, плоских течений.
- 24. Условия упрощения уравнений движения для свободной атмосферы, пограничного слоя и приземного слоя.
- 25. Упрощение уравнений движения в проекции на вертикальную ось.
- 26. Установившееся движение в свободной атмосфере в поле прямолинейных и круговых изобар.
- 27. Связь между скоростью движения по круговым изобарам и геострофической величиной ветра. Приближённые формулы при больших радиусах кривизны изобар.
- 28. Инерционные движения в поле силы Кориолиса и циклострофический ветер.
- 29. Связь между значениями горизонтального градиента давления на различных высотах.
- 30. Изменение геострофической скорости с высотой. Геострофическая адвекция температуры. Ее связь с изменением скорости по высоте.
- 31. Вихрь скорости относительный, переносный и абсолютный. Связь относительного вихря с полем давления.
- 32. Уравнение вихря. Факторы, приводящие к изменению относительного вихря. Условия сохранения абсолютного вихря.
- 33. Поверхности раздела в атмосфере. Типы разрывов. Примеры формирования поверхностей раздела.
- 34. Динамические и кинематические условия на поверхности раздела.
- 35. Ориентация поверхности раздела в пространстве. Связь ее наклона с полем давления.
- 36. Связь между наклоном поверхности раздела и разрывами параметров среды (скоростью ветра и температуры).
- 37. Анализ поля ветра и поля давления в области фронта.
- 38. Качественное описание возникновения гравитационных колебаний в стратифицированной среде.
- 39. Качественное описание возникновения волновых движений в поле силы Кориолиса и барического градиента.
- 40. Основные параметры волн. Связь между ними.
- 41. Вывод уравнений движения и уравнения неразрывности для малых волновых возмущений.
- 42. Преобразования уравнения притока тепла для малых волновых отклонений.
- 43. Преобразование системы для волновых возмущений с использованием функции тока и потенциала скорости. Анализ факторов определяющих существование различных волн.
- 44. Принцип вывода дисперсионного уравнения (для высокочастотных волн).
- 45. Звуковые волны. Фильтрация звуковых волн.
- 46. Гравитационные волны. Частоты гравитационных волн.
- 47. Инерционные планетарные волны Россби. Их частота и фазовая скорость.
- 48. Средний глобальный перенос воздушных масс.
- 49. Пограничные слои в океане и в атмосфере. Постановка задачи Экмана для распределения скорости ветрового дрейфового течения в верхнем слое океана.
- 50. Интегрирование уравнений задачи Экмана. Спираль Экмана.

- 51. Распределение ветра с высотой в пограничном слое атмосферы.
- 52. Волны Кельвина.
- 53. Топографические волны.
- 54. Особенности динамики океанических течений у западных берегов.
- 55. Особенности динамики потоков в экваториальной зоне.
- 56. Неустойчивость гравитационных волн в среде с вертикальным сдвигом скорости.
- 57. Влияние меридионального сдвига скорости на устойчивость зонального потока.
- 58. Циркуляционные процессы.

6. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

- 1. Педлоски Дж. Геофизическая гидродинамика. Т. 1 и 2. М.: Мир, 1984.
- 2. Бреховских Л.М., Гончаров В.В. Введение в динамику сплошных сред. М.: Наука, 1982.
- 3. Подольская Э.Л. Механика жидкости и газа. Раздел «Геофизическая гидродинамика». чебное пособие. СПб.: изд. РГГМУ, 2007.- 154с.
- 4. Метеорология и климатология: Учебное пособие / Г.И. Пиловец. М.: НИЦ Инфра-М; Мн.: Нов. знание, 2013. 399 с. http://znanium.com/catalog.php?bookinfo=391608

б) дополнительная литература:

- 1. Монин А.С.Теоретические основы геофизической гидродинамики. Л.: Гидрометеоиздат, 1988.
- 2. Гилл А. Динамика атмосферы и океана. Т. 1 и 2. М.: Мир, 1986.
- 3. Гринспен Х. Теория вращающихся жидкостей. Л.: Гидрометеоиздат, 1975.
- 4. *Cushman-Roisin B*. Introduction to Geophysical Fluid Dynamics. Prentice Hall Inc., New Jersey, 1994.
- 5 . Гандин Л.С., Лайхтман Д.Л., Матвеев Л.Т., Юдин М.И. Основы динамической метеорологии. Л.: Гидрометеоиздат, 1955. http://elib.rshu.ru/files_books/pdf/img-214133121.pdf
- 6. Гаврилов А.С. и др. Задачник по динамической метеорологии. Л.: Гидрометеоиздат, 1984. 166 с. http://elib.rshu.ru/files_books/pdf/img-213163549.pdf
- 7. Динамическая метеорология. // Под ред. Лайхтмана Д.Л. Л.: Гидрометеоиздат, 1976. 607 с.
- 8. Егоров К.Л., Еремина Н.С. Методические указания по дисциплине «Механика жидкости и газа. (Геофизическая гидродинамика)» (для заочной формы обучения) СПб.: РГГМУ, 2016. 36 с. http://elib.rshu.ru/files_books/pdf/rid_84cc0e73d57b4bda9ae56c0f6b7710fa.pdf

в) интернет-источники

- 1. Электронный ресурс Учебные ресурсы для сообщества Geoscience. Режим доступа: https://www.meted.ucar.edu/
- 2. Электронный ресурс Шакина Н.П. Лекции по динамической метеорологии/Лекции для аспирантов и студентов старших курсов метеорологических специальностей и научных работников. М.: ТРИАДА ЛТД, Москва, 2013. 160 с. Режим доступа: http://method.meteorf.ru/publ/books/lectures/lectures.pdf
- 3. Электронный ресурс Program in Atmospheres, Oceans and Climat/ Режим доступа: http://eaps-www.mit.edu/paoc/

г) программное обеспечение

windows 7 48130165 21.02.2011 office 2010 49671955 01.02.2012

д) профессиональные базы данных

не используются

е) информационные справочные системы:

Электронно-библиотечная система ГидроМетеоОнлайн. Режим доступа: http://elib.rshu.ru Электронно-библиотечная система Знаниум. Режим доступа: http://znanium.com

7. Методические указания для обучающихся по освоению дисциплины

7.1. Методическое обеспечение самостоятельной работы

Учебники и учебные пособия, приведенные в списке литературы.

Методическое обеспечение аудиторной работы – варианты тестовых и контрольных расчетных заданий.

Справочные и информационные материалы на сайте RSHU.

7.2.Методика проведения текущего контроля успеваемости и промежуточной аттестации и критерии оценивания

Усвоение изучаемого материала проверяется в результате <u>текущего контроля</u> во время лекций (путем опросов), лабораторных занятий (по результатам тестирования и выполнения контрольных расчетных заданий). Оценки (в баллах) выставляются за все виды текущего контроля и мероприятий промежуточной аттестации.

<u>Промежуточная аттестация</u> проводится в форме устного зачета, включающего ответ на два теоретических вопроса.

<u>Итоговая оценка за период обучения (семестр)</u> выставляется после прохождения промежуточной аттестации с использованием системы накопления баллов и учитывает результаты зачета, текущей работы, выполнения тестовых заданий, контрольных расчетных работ, посещаемости занятий.

В итоговой оценке учитываются:

- результаты текущей работы на лабораторных занятиях, результаты выполнения домашних заданий;
 - результаты выполнения контрольных мероприятий (тестов, расчетных заданий);
 - посещаемость занятий;
 - результаты зачета.

8. Информационные технологии, используемые при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Тема	Образовательные и	Перечень программного обеспечения
(раздел)	информационные технологии	и информационных справочных
дисциплины		систем
Темы 1-10	информационные технологии	1. Электронно-библиотечная система
	1. проведение лекций-вебинаров	ГидроМетеоОнлайн http://elib.rshu.ru
	2. организация взаимодействия с	2. Электронно-библиотечная система
	обучающимися посредством	Знаниум http://znanium.com
	электронной почты	3. Пакет Microsoft Office.
	образовательные технологии	
	1. интерактивное взаимодействие	
	педагога и студента	

2. сочетание	индивидуального	И	
коллективного о	бучения		
3. проведение те	естирования		

9. Материально-техническое обеспечение дисциплины

Материально-техническое обеспечение программы соответствует действующим санитарно-техническим и противопожарным правилам и нормам и обеспечивает проведение всех видов практических занятий и самостоятельной работы студентов.

Учебный процесс обеспечен аудиториями, комплектом лицензионного программного обеспечения, библиотекой РГГМУ.

- 1. Учебная аудитории для проведения занятий лекционного типа специализированной (учебной) мебелью, доской, мультимедиа оборудованием.
- 2. Учебная аудитории для проведения занятий семинарского типа укомплектована специализированной (учебной) мебелью, доской.
- 3. Учебная аудитория для групповых и индивидуальных консультаций укомплектована специализированной (учебной) мебелью, оснащенная компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечено доступом в электронную информационно-образовательную среду организации
- 4. Учебная аудитория для текущего контроля и промежуточной аттестации укомплектована специализированной (учебной) мебелью.
- 5. **Помещение** для самостоятельной работы укомплектовано специализированной (учебной) мебелью, оснащено компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечено доступом в электронную информационно-образовательную среду организации

10. Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности.