федеральное государственное бюджетное образовательное учреждение высшего образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра Прикладной информатики

Методические рекомендации для обучающихся по освоению дисциплины

ФТД.01 Методы машинного обучения

Основная профессиональная образовательная программа высшего образования по направлению подготовки

09.04.03 Прикладная информатика

Направленность (профиль):

Прикладные геоинформационные системы управления

Уровень: Магистратура

Форма обучения Очная

Рассмотрена и утверждена на заседании кафедры 28.06.2022 г., протокол №6

И.о. зав. кафедрой ______ Истомин Е.П.

Авторы-разработчики:

к.т.н., доцент Попов Н.Н.

Санкт-Петербург 2022

1. Паспорт Фонда оценочных средств по дисциплине

«Методы машинного обучения»

Таблица 1. Перечень оценочных средств текущего контроля

№	Тема дисциплины	Формируемые компетенции	Формы текущего контроля успеваемости
3 семестр			
1	Основы машинного обучения и его алгоритмы	ПК-1	Устная защита результатов лабораторной работы
2	Модели глубокого обучения и нейронные сети	ПК-1	Устная защита результатов лабораторной работы
3	Применение методов машинного обучения в анализе данных	ПК-1	Устная защита результатов лабораторной работы
	Форма промежуточной аттестац	Зачет	

2. Перечень компетенций, с указанием этапов их формирования в процессе освоения дисциплины

Процесс изучения дисциплины направлен на формирование компетенций: ПК-1.

Таблица 2. Перечень компетенций, формируемых в процессе освоения дисциплины

Формируемые компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	Виды оценочных средств
	 Знать: основные алгоритмы и модели машинного обучения, включая методы глубокого обучения и нейронные сети, применимые для анализа данных; принципы и подходы к использованию машинного обучения для обработки и 	Задания практикоориентированного уровня: Лабораторные работы $N ext{0.1}, 2, 3.$
ПК-1	анализа больших объемов геоданных. Уметь: — разрабатывать и адаптировать методики анализа данных с использованием машинного обучения для задач, связанных с управлением и оценкой территорий; — применять модели машинного и глубокого обучения для выявления закономерностей и прогнозирования на основе геоданных.	Задания практико- ориентированного уровня: Лабораторные работы № 1, 2, 3.
	Владеть: — способами настройки и оптимизации моделей машинного обучения, включая выбор и тестирование алгоритмов для задач в геоинформационных системах; — методами построения и внедрения аналитических моделей машинного обучения в процесс анализа пространственных данных.	Задания практикоориентированного уровня: Лабораторные работы $N cite{2} 1, 2, 3.$

3. Балльно-рейтинговая система оценивания

Таблица 3. Распределение баллов по видам учебной работы — 3 семестр

Вид учебной работы, за которую ставятся баллы	Баллы
Текущий контроль успеваемости	0-70
Промежуточная аттестация	0-30
ИТОГО	0-100

Таблица 3.1. Распределение баллов по текущему контролю успеваемости

No	Лабораторные работы	Баллы
1	Лабораторная работа №1. Основы машинного обучения и его алгоритмы.	0-10
2	Лабораторная работа №2. Модели глубокого обучения и нейронные сети.	0-30
3	Лабораторная работа №3. Применение методов машинного обучения в анализе данных.	0-30
-	ИТОГО	0-70

Таблица 3.2. Конвертация баллов в итоговую оценку

Оценка	Баллы
Зачтено	40-100
Незачтено	0-39

4. Содержание оценочных средств текущего контроля.

Перечень учебно-методического и информационного обеспечения самостоятельной работы обучающихся по дисциплине, в том числе по подготовке к текущему контролю и промежуточной аттестации представлены в рабочих программах и методических рекомендациях для обучающихся по освоению дисциплины.

Перечень лабораторных работ, методика выполнения и критерии оценивания по темам дисциплины:

Лабораторная работа №1. «Основы машинного обучения и его алгоритмы»

Формируемые компетенции: ПК-1.

Цель работы: получить базовые знания в предметной области дисциплины "Методы машинного обучения", включая принципы работы алгоритмов, типы задач обучения, какие инструменты и технологии используются.

В рамках лабораторной работы выполните следующие задачи:

- 1. Изучить основные принципы и перспективы развития машинного обучения.
- 2. Понять различные типы задач машинного обучения (классификация, регрессия, кластеризация, обучение с подкреплением и т.д.).
- 3. Рассмотреть примеры алгоритмов машинного обучения (линейная регрессия, к-ближайших соседей, случайный лес, градиентный бустинг и т.д.).
- 4. Кратко рассмотреть основные библиотеки и инструменты для реализации алгоритмов машинного обучения (pandas, NumPy, TensorFlow, PyTorch, Keras, Scikitlearn).
- 5. Исследовать основные этапы решения задачи машинного обучения (предварительная обработка данных, выбор и обучение алгоритма, оценка результатов).

Таблица 4.1. Критерии оценивания лабораторной работы

Критерий оценивания	
Работа представлена преподавателю, задания выполнены в полном объеме.	
Проведена устная защита результатов работы.	10 баллов
Выявлены знания компетентности в рамках поставленной цели.	
Работа представлена преподавателю, задания выполнены частично.	
Проведена устная защита результатов работы.	5 баллов
Выявлены частичные знания компетентности в рамках поставленной цели.	
Работа не была представлена преподавателю, задания не выполнены.	0 баллов
Знания компетентности в рамках поставленной цели не выявлены.	O Gallion

Лабораторная работа №2. «Модели глубокого обучения и нейронные сети»

Формируемые компетенции: ПК-1.

Цель работы: получить практические навыки работы с большими данными в контексте методов машинного обучения. Освоить технологии предобработки, анализа, визуализации и моделирования больших данных.

В рамках лабораторной работы выполните следующие задачи:

- 1. Изучить основные концепции и техники работы с большими данными, включая Hadoop, MapReduce, Spark и т.д.
- 2. Применить методы предобработки данных, чтобы преобразовать сырые данные в подходящий для моделирования формат
- 3. С помощью основных инструментов визуализации провести анализ данных и идентифицировать важные характеристики и тренды.
- 4. Применить техники машинного обучения для моделирования и предсказания на основе обработанных данных.
- 5. Оценить эффективность и точность предсказательной модели с использованием адекватных метрик.
- 6. Подготовить отчет, содержащий методологию, реализацию, результаты анализа и выводы.

Таблица 4.2. Критерии оценивания лабораторной работы

Критерий оценивания	
Работа представлена преподавателю, задания выполнены в полном объеме.	
Проведена устная защита результатов работы.	30 баллов
Выявлены знания компетентности в рамках поставленной цели.	
Работа представлена преподавателю, задания выполнены частично.	
Проведена устная защита результатов работы.	15 баллов
Выявлены частичные знания компетентности в рамках поставленной цели.	
Работа не была представлена преподавателю, задания не выполнены.	0 баллов
Знания компетентности в рамках поставленной цели не выявлены.	O GAILIOB

Лабораторная работа №3. «Визуализация полученных результатов»

Формируемые компетенции: ПК-1.

Цель работы: изучение основных подходов и методов визуализации данных, полученных с использованием методов машинного обучения.

В рамках лабораторной работы выполните следующие задачи:

- 1. Предобработка и анализ исходных данных. Оценка качества данных и количественные характеристики.
- 2. Применение и настройка модели машинного обучения на исходном массиве данных.
- 3. Получение результатов моделирования и интерпретация полученных результатов.
- 4. Визуализация полученных результатов с использованием подходящих техник и инструментов. Визуализация может включать графики распределения, матрицы корреляции, диаграммы рассеяния и другие типы графиков.
- 5. Сравнение полученных результатов визуализации с теоретическими предположениями и вывод.

Таблица 4.3. Критерии оценивания лабораторной работы

Критерий оценивания	Результат
Работа представлена преподавателю, задания выполнены в полном объеме.	
Проведена устная защита результатов работы.	30 баллов
Выявлены знания компетентности в рамках поставленной цели.	
Работа представлена преподавателю, задания выполнены частично.	
Проведена устная защита результатов работы.	15 баллов
Выявлены частичные знания компетентности в рамках поставленной цели.	
Работа не была представлена преподавателю, задания не выполнены.	0 баллов
Знания компетентности в рамках поставленной цели не выявлены.	О баллов

5. Содержание оценочных средств промежуточной аттестации

Форма промежуточной аттестации по дисциплине: **зачет** Форма проведения **зачета:** устный ответ на один вопрос в билете.

Перечень вопросов и критерии оценивания ответов на вопросы в билете по темам дисциплины.

Перечень вопросов для подготовки к зачету:

Компетенции: ПК-1

- 1. Большие данные. Основные характеристики, понятия, определения.
- 2. Характериситки VVV. Основные характеристики, понятия, определения.
- 3. Hadoop. Основные характеристики, понятия, определения.
- 4. Источники гидрометеорологических данных. Основные характеристики, понятия, определения.
- 5. Сбор данных о среде. Основные характеристики, понятия, определения.
- 6. Концепция «Интернет вещей». Основные характеристики, понятия, определения.
- 7. Взаимодействие с облачными хранилищами данных. Основные характеристики, понятия, определения.
- 8. Работа с thingspeak.com. Основные характеристики, понятия, определения.
- 9. Виды и характеристики больших данных. Основные характеристики, понятия, определения.
- 10. Технологии работы с большими данными. Основные характеристики, понятия, определения.
- 11. Шардинг и репликация. Основные характеристики, понятия, определения.
- 12. Архитектуры хранения. Основные характеристики, понятия, определения.
- 13. Стек технологий Hadoop. Основные характеристики, понятия, определения.
- 14. Распределенная файловая система HDFS. Основные характеристики, понятия, определения.
- 15. Модель вычислений MapReduce. Основные характеристики, понятия, определения.
- 16. Аналитика данных. Основные характеристики, понятия, определения.
- 17. Виды анализа данных. Основные характеристики, понятия, определения.
- 18. Методология исследования данных CRISP-DM. Основные характеристики, понятия, определения.
- 19. Инструменты анализа обычных данных (RapidMiner, Weka, Knime). Основные характеристики, понятия, определения.
- 20. Инструменты анализа больших данных (Hive, Pig). Основные характеристики, понятия, определения.
- 21. Batch обработка и обработка в реальном времени. Основные характеристики, понятия, определения.
- 22. Анализ сервисов облачных вычислений. Основные характеристики, понятия, определения.
- 23. Программные комплексы машинного обучения Apache Spark и Vowpal Wabbit. Основные характеристики, понятия, определения.
- 24. Моделирование и оценка результатов. Основные характеристики, понятия, определения.
- 25. Создание слоев ГИС и их отображение на веб-портале. Основные характеристики, понятия, определения.

Таблица 5. Критерии оценивания промежуточной аттестации в форме зачета

Критерий оценивания	Баллы
Обучающийся ответил на один вопрос в билете.	
Продемонстрировал знания по формируемым компетенциям в полном объеме	30 баллов
(приводились доводы и объяснения). Знания освоения компетенций выявлены.	
Обучающийся ответил частично на один вопрос в билете.	
Продемонстрировал знания по формируемым компетенциям частично. Постиг	
смысл изучаемого материала (может высказать вербально, четко и ясно, или	15 баллов
конструировать новый смысл, новую позицию). Знания освоения компетенций	
выявлены частично.	
Обучающийся не ответил на вопрос в билете.	
Не может согласовать свою позицию или действия относительно обсуждаемой	0 баллов
тематики. Знания освоения компетенций не выявлены.	