федеральное государственное бюджетное образовательное учреждение высшего образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра прикладной океанографии ЮНЕСКО-МОК и КУПЗ

Рабочая программа дисциплины

МОДЕЛИРОВАНИЕ МОРСКИХ ЭКОСИСТЕМ

Основная профессиональная образовательная программа высшего образования по направлению подготовки

05.03.05 «Прикладная гидрометеорология»

Направленность (профиль): Прикладная океанология

Уровень: **Бакалавриат**

Форма обучения Очная/заочная

Согласовано Руководитель ОПОП	Председатель УМСИ.И. Палкин
Царев В.А.	Рекомендована решением Учебно-методического совета РГГМУ 20 2√г., протокол № 9
	Рассмотрена и утверждена на заседании кафедры
	Авторы-разработчики: ——————————————————————————————————

Санкт-Петербург 2021

1. Цель и задачи освоения дисциплины

Целью освоения дисциплины "Моделирование морских экосистем" является формирование у студентов комплекса научных знаний в области математической экологии, предметом которой являются модели экологических объектов и процессов.

Задачи:

- изучение количественными методами основ структуры и функционирования водных экосистем,
- изучение уравнений моделей, описывающих динамику популяций при различных типах биологического взаимодействия в сообществе одной или нескольких популяций;
- изучение основных уравнений, описывающих биогеохимические процессы в водных экосистемах;
 - получение знаний по составлению моделей для различных видов гидробионтов;
- знакомство с различными типами математических моделей морских и пресноводных экосистем.

2. 2. Место дисциплины в структуре основной профессиональной образовательной программы.

Дисциплина «Моделирование морских экосистем» относится к дисциплинам части, формируемой участниками образовательных отношений Блока 1 профессиональной подготовки бакалавров по направлению 05.03.05 «Прикладная гидрометеорология», профиля «Прикладная гидрология» (Б1.В.07) и изучается в 8 семестре обучения.

Для освоения данной дисциплины, обучающиеся должны освоить разделы дисциплин: «Математика», «Введение в химию природных вод», «Экология», «Численные методы математического моделирования», «Химия океана».

Параллельно с дисциплиной «Моделирование морских экосистем» изучаются дисциплины «Оперативная океанография», «Программирование инженерных и научных задач в океанологии» и другие профильные дисциплины по выбору студента.. Дисциплина «Моделирование морских экосистем» является базовой для освоения дисциплин по направлению 05.04.05 Прикладная гидрометеорология: «Промысловая океанология», «Теория моделирования морских экосистем», «Моделирование антропогенных воздействий на водную среду». Приобретенные знания и умения могут быть использованы при подготовке выпускных квалификационных работ соответствующей направленности.

3. Перечень планируемых результатов обучения

Процесс изучения дисциплины направлен на формирование профессиональных компетенций раздела ПК-4 (Способность анализировать гидрофизические, гидродинамические и гидрохимические процессы, происходящие в морях и океанах и их взаимосвязь с атмосферными процессами и процессами в водах суши): ПК-4.1, ПК-4.3, ПК-4.4.

Таблица 3

Профессиональные компетенции	И
------------------------------	---

Код и наименование профессиональной компетенции	Код и наименование индикатора достижения профессиональной компетенции	Результаты обучения	
ПК-4: Способность	ПК 4.1 Оценивает пространст-	Знать:	роль
анализировать	венно-временную изменчивость	биогеохимических	
гидрофизические,	гидрофизических, гидродинами-	круговоротов	В

гидродинамические и гидрохимические процессы, происходящие в морях и океанах и их взаимосвязь с атмосферными процессами и процессами в водах суши

ческих и гидрохимических процессов, происходящих в морях и океанах и их взаимосвязь с атмосферными процессами, процессами в водах суши и антропогенным влиянием.

функционировании экосистем Уметь: оценивать влияние гидрофизических, гидродинамических и гидрохимических процессов на формирование первичной продуктивности морских экосистем Владеть: навыками представления результатов анализа процессов, происходящих в морских экосистемах под влиянием естественных и антропогенных факторов

ПК 4.3 Применяет методы математического моделирования для анализа и прогноза состояния океанов и морей.

Знать: основные принципы построения экологических моделей;

Уметь: формулировать основ-

ные уравнения для описания динамики биологических сообществ
Владеть: методами расчета влияния лимитирующих факторов на развитие биологических сообществ, методом расчета динамики популяций взаимодействующих между собой

ПК 4.4 Работает с пакетами прикладных программ при выполнении анализа и прогноза состояния океанов и морей.

Знать: основные уравнения, описывающие обшие закономерности динамики биологических сообществ и их взаимодействие морской средой, процессы переноса энергии И вещества экосистемах

биологических сообществ

Уметь: анализировать результаты расчетов и моделирования

Владеть: преставлениями о реализации биогеохимических модулей в моделях (ERSEM и др.)

4. Структура и содержание дисциплины

4.1. Объем дисциплины

Объем дисциплины составляет 3 зачетные единицы, 108 академических часов.

Таблица 4.1

Объем дисциплины по видам учебных занятий в академических часах (очная форма)

Объём дисциплины	Всего часов
	Очная форма обучения
	8 семестр
Общая трудоёмкость дисциплины	108
Контактная ¹ работа обучающихся с	42
преподавателям (по видам аудиторных	
учебных занятий) – всего:	
в том числе:	
лекции	14
практические занятия	14
лабораторные занятия	14
Самостоятельная работа (СРС) –	66
всего:	
в том числе:	
контрольная работа	
Вид промежуточной аттестации (за-	зачет
чет/экзамен)	

Таблица 4.1

Объем дисциплины по видам учебных занятий в академических часах (очная форма)

Объём дисциплины	Всего часов
	Заочная форма обучения
	5 курс
Общая трудоёмкость дисциплины	108
Контактная ² работа обучающихся с	12
преподавателям (по видам аудиторных	
учебных занятий) – всего:	
в том числе:	
лекции	4
практические занятия	4
лабораторные занятия	4

4

Самостоятельная работа (СРС) –	66
всего:	
в том числе:	
контрольная работа	20
Вид промежуточной аттестации (за-	зачет
чет/экзамен)	

Таблица 5.1 Структура дисциплины для очной формы обучения

N.C.		тр	самос	учебно тоятель нтов, ча	ная	ты, в т.ч. работа	Формы	емые щии	стижения
№ п/п	Раздел / тема дисциплины	Семестр	Лекции	Лаборатор- ные	Практич.	CPC	текущего контроля успеваемости	Формируемые компетенции	Индикаторы достижения компетенций
1	Введение в математическую экологию.	8	2	-	2	10	Семинар (со- общения).	ПК-4	ПК-4.3
2	Моделирование динамики популя- ций биологических сообществ	8	4	4	4	18	Семинар (сообщения). Лабораторные работы	ПК-4	ПК-4.3
3	Биогеохимические круговороты и методы их моделирования.	8	4	4	4	22	Семинар (сообщения). Лабораторные работы	ПК-4	ПК-4.1 ПК-4.3 ПК-4.4
4	Моделирование первичной продуктивности водных экосистем	8	4	6	4	16	Семинар (сообщения). Лабораторные работы	ПК-4	ПК-4.1 ПК-4.3 ПК-4.4
	Итого 108 часов		14	14	14	66			

Таблица 5.2 Структура дисциплины для заочной формы обучения

№ п/п		Kyp	Виды учебной работы, в т.ч. самостоятельная работа студентов, час.	Tekvillero	Формиру	компетен	ции	Индикат	Opbi	достижен ия	
----------	--	-----	--	------------	---------	----------	-----	---------	------	-------------	--

			Лекции	Лаборатор- ные	Практич.	СРС			
1	Введение в математическую экологию.	5	1	0	1	20	Семи- нар(сообщени я)	ПК-4	ПК-4.3
2	Моделирование динамики популяций биологических сообществ	5	1	2	1	24	Семинар (со- общения). Лабораторная работа	ПК-4	ПК-4.3
3	Биогеохимические круговороты и методы их моделирования.	5	1		1	24	Семинар (сообщения).	ПК-4	ПК-4.1 ПК-4.3 ПК-4.4
4	Моделирование первичной продуктивности водных экосистем	5	1	2	1	28	Семинар (со- общения). Лабораторные работы	ПК-4	ПК-4.1 ПК-4.3 ПК-4.4
	Итого 108 часов		4	4	4	96		·	

4.2. Содержание разделов дисциплины

4.2.1. Введение в математическую экологию

История развития математической экологии как науки. Основные понятия и определения. Балансовые уравнения в экологии. Классификация природных экосистем. Иерархия математических моделей – модели процессов, динамики популяций, первичной продуктивности, экосистем. Модели процессов: уравнение переноса и трансформации вещества и его использование в экосистемных моделях.

4.2.2. Моделирование динамики популяций биологических сообществ

Простейшие математические модели популяционной динамики. Исследование однородной популяции, живущей изолировано в неизменной среде. Математическое описание сосуществования двух биологических видов, имеющих общий ресурс. Уравнение Вольтерра. Уравнение Бернулли. Закон сохранения средних значений. Модель межвидовой конкуренции по типу хищник-жертва (модель Лотке- Вольтерра). Изменение численности популяции хищника и жертвы при искусственном уничтожении особей обоих видов. Обобщенные модели Вольтера по типу хищник-жертва. Уравнения Колмогорова для описания динамики популяций хищника и жертвы. Понятие о трофической функции. Закон конкурентного исключения (принцип Гаузе). Понятие об экологической нише.

4.2.3. Биогеохимические круговороты и методы их моделирования

Роль биогеохимических круговоротов в функционировании экосистем. Моделирование кислородного режима и круговорота лабильного органического вещества в водных экосистемах. Моделирование круговорота биогенных элементов – соединений фосфора, азота и кремния. Реализации биогеохимических модулей в моделях (ERSEM).

4.2.4 Моделирование первичной продуктивности водных экосистем

Моделирование сезонной динамики биогенных элементов водных экосистем. Моделирование динамики фитопланктона — роста, смертности, оседания, выедания зоопланктоном. Моделирование первичной продуктивности. Модели продуктивности. Учет в моделях продуктивности влияния лимитирующих факторов. Моделирование динамики зоопланктонных сообществ, моделирование зоопланктонных сообществ с учетом возрастной структуры. Математические модели бентосных сообществ (ERSEM и др.). Влияние антропогенных факторов на бентосные сообщества.

4.3. Практические занятия, их содержание

Таблица 6.1. Содержание лабораторных и практических занятий для очной формы обучения

№ п/п	№ раз- дела дисцип- лины	Тематика занятий	Всего часов	В том чис- ле часов практиче- ской подго- товки
1	2	Лабораторная работа №1 Моделирование динамики 2-х видовой экосистемы, с популяциями взаимодействующими по типу «хищник — жертва» (модель Лотки — Вольтерра) Лабораторная работа №2 Моделирование взаимодействия популяций по типу «хищник—жертва (Модель Лотки — Вольтерра)» в игровом формате	4	4
2	3	Лабораторная работа № 3. Моделирование переноса фосфора в в водоеме	4	4
3	3,4	Лабораторная работа №4 Моделирование влияния температуры на рост фитопланктона. Лабораторная работа №5 Моделирование влияния освещенности на рост фитопланктона. Лабораторная работа №6 Оценка удельной скорости роста водорослей в зависимости от внутриклеточного содержания биогенных соединений. Лабораторная работа №7 Моделирование фильтрационной активности зоопланктона.	6	6
4	1-4	Семинарские занятия: Математические модели экосистем водоемов	14	

Таблица 6.2. Содержание лабораторных и практических занятий для заочной формы обучения

	№ раздела дисци- плины	Тематика занятий	Всего часов	В том чис- ле часов практиче- ской подго- товки
1	2	Лабораторная работа №1 Моделирование динамики 2-х видовой экосистемы, с популяциями взаимодействующими по типу «хищник – жертва» (модель Лотки – Вольтерра)	2	2
3	3,4	Лабораторная работа №4 Моделирование влияния температуры на рост фитопланктона. Лабораторная работа №5 Моделирование влияния освещенности на рост фитопланктона.	2	2
4	1-4	Семинарские занятия: Математические модели экосистем водоемов	4	

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине.

Электронные ресурсы, разработанные в рамках дисциплины, размещенные на сайте «Моделирование экосистем» в интерактивной системе SAKAI РГГМУ (http://sakai.rshu.ru):

- конспекты лекций;
- методические указания по дисциплине для студентов заочного обучения;
- задание контрольной работы для студентов заочного обучения;
- практикум по дисциплине.

Доступ к электронным ресурсам осуществляется авторизованными пользователями. Это требует самостоятельной регистрации студентом на сайте SAKAI РГГМУ (http://sakai.rshu.ru) и последующего подключения к сайту дисциплины преподавателем по ID студента.

6. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Учет успеваемости обучающегося по дисциплине осуществляется по 100-балльной шкале. Максимальное количество баллов по дисциплине за один семестр – 100:

- максимальное количество баллов за выполнение всех видов текущего контроля –
 63;
 - максимальное количество баллов за посещение лекционных занятий 7;
 - максимальное количество баллов за прохождение промежуточной аттестации 30.

6.1. Текущий контроль

Типовые задания, методика выполнения и критерии оценивания текущего контроля по разделам дисциплины представлены в Фонде оценочных средств по данной дисциплине.

6.2. Промежуточная аттестация

Форма промежуточной аттестации по дисциплине – **зачет (8 семестр или 5 курс).** Форма проведения **зачета**:

- для очной формы обучения - устный опрос по вопросам;

-для заочной формы обучения - устный опрос по вопросам.

Перечень вопросов для подготовки зачету: ПК-4

- 1. Балансовые уравнения в экологии.
- 2. Классификация экосистем
- 3. Модели процессов: модели переноса и трансформации вещества.
- 4. Модели популяций.
- 5. Борьба двух видов за общий ресурс.
- 6. Сосуществование 2-х биологических видов.
- 7. Модель Вольтерра динамики популяций Хищник-Жертва.
- 8. Закон о средних значениях численности взаимодействующих популяций.
- 9. Борьба п-видов за общий ресурс
- 10. Трофическая функция. В каких уравнениях используется, ее возможные виды.
- 11. Закон Гаузе. Понятие об экологической нише.
- 12. Моделирование первичной продуктивности.
- 13. Закон Либиха. Лимитирующие факторы.
- 14. Моделирование фитопланктона.
- 15. Биогеохимический цикл фосфора и азота в водной среде.
- 16. Цикл кислорода в водной среде.
- 17. Уравнения динамики популяций Колмогорова
- 18. Моделирование зоопланктона
- 19. Моделирование динамики популяции бентоса.
- 20. Влияние антропогенных факторов на бентосные сообщества.

6.3. Балльно-рейтинговая система оценивания

Таблица 14.

Вид учебной работы, за которую ставятся баллы	Баллы
Посещение лекционных занятий при наличии конспекта	0-7
Лабораторная работа №1 Моделирование взаимодействия популя-	0-7
ций по типу «хищник-жертва (Модель Лотки – Вольтерра)»	
Лабораторная работа №2 Моделирование взаимодействия популя-	0-9
ций по типу «хищник-жертва (Модель Лотки – Вольтерра)» в иг-	
ровом формате	
Лабораторная работа № 3. Моделирование переноса фосфора в во-	0-9
доеме	
Лабораторная работа № 4. Моделирование влияния температуры	0-7
на рост фитопланктона.	
Лабораторная работа №5. Моделирование влияния освещенности	0-7
на рост фитопланктона	
Лабораторная работа № 6 Оценка удельной скорости роста водо-	0-7
рослей в зависимости от внутриклеточного содержания биогенных	
соединений	
Лабораторная работа № 7 Моделирование фильтрационной актив-	0-7
ности зоопланктона	
Доклад на семинаре «Математические модели экосистем водо-	0-10
emob»	
Промежуточная аттестация	0-30
ИТОГО	0-100

Распределение баллов по видам учебной работы 8 семестр очного обучения

Распределение баллов по видам учебной работы 5 курс заочного обучения

Вид учебной работы, за которую ставятся баллы	Баллы
Посещение лекционных занятий при наличии конспекта	0-4
Контрольная работа	0-35
Лабораторная работа№1 Моделирование взаимодействия популя-	0-7
ций по типу «хищник-жертва (Модель Лотки – Вольтерра)»	
Лабораторная работа №4 Моделирование влияния температуры на	0-7
рост фитопланктона.	
Лабораторная работа №5 Моделирование влияния освещенности на	0-7
рост фитопланктона	
Доклад на семинаре Математические модели экосистем водоемов	0-10
Промежуточная аттестация	0-30
ИТОГО	0-100

Минимальное количество баллов для допуска до промежуточной аттестации составляет 40 баллов при условии выполнения всех видов текущего контроля.

Таблица 16

Балльная шкала итоговой оценки на зачете с учетом результатов освоения дисциплины

Оценка	Баллы
Зачтено	56-100*
Незачтено	0-55*

^{*}В итоговой оценке результат ответа на вопрос зачета не должен быть менее 16 баллов.

7. Методические рекомендации для обучающихся по освоению дисциплины

Методические рекомендации ко всем видам аудиторных занятий, а также методические рекомендации по организации самостоятельной работы, в том числе по подготовке к текущему контролю и промежуточной аттестации представлены в Методических рекомендациях для обучающихся по освоению дисциплины «Моделирование морских экосистем».

8. Учебно-методическое и информационное обеспечение дисциплины

8.1. Перечень основной и дополнительной учебной литературы

а) Основная литература

- 1. M.Ф. Романов, M.П. Фёдоров Математически модели в экологии. СПб.: Изд-во «Иван Фёдоров», 2003.- 228 с.
- 2. 2. *М.Ф. Романов, М.П. Фёдоров* Математические основы экологии. СПб.: СПбГТУ, 1999. 155 с.
- 3. *Еремина Т.Р.*, *Волощук Е.В.*, *Хаймина О.В.* Моделирование экосистем: практикум.-СПб.: РГГМУ, 2019 -28 с.— URL:

http://elib.rshu.ru/files_books/pdf/rid_2b5936ccaaa64b2cb4793f2f90a8d47e.pdf

б) Дополнительная литература:

1. *П.Голубятников Л.Л.* Цикл азота в земной климатической системе и его моделирование [Электронный ресурс] / Л.Л. Голубятников, И.И. Мохов, А.В. Елисеев. // Известия Российской академии наук. Серия ФАО. - 2013. - Т. 49. № 3. - С. 255-270. – URL: https://elibrary.ru/item.asp?id=19051201

- 2. *Савчук О.П., Вулфф Ф.* Круговорот азота и фосфора в открытой Балтике /В кн.: Проект «Балтика». Проблемы исследования и математического моделирования экосистемы Балтийского моря. Вып.5. СПб: Гидрометеоиздат, 1997. С. 63—103.
- 3. *Меншуткин В.В.* Искусство моделирования (экология, физиология, эволюция). Петрозаводск– Санкт-Петербург, 2010. 416 с.
- 4. *Меншуткин В.В.*, *Руховец Л.А.*, *Филатов Н.Н.* Моделирование экосистем пресноводных озер (обзор). 2. Модели экосистем пресноводных озер. Водные ресурсы.— 2014.— τ .41.— N01.— с. 24-38
- 5. *Меншуткин В.В.* Имитационное моделирование водных экологических систем. СПб.: Наука, 1993. 160 с.
- 6. Якушев Е. В. Математическое моделирование распределения и изменчивости соединений фосфора в водах океана // Гидрохимические процессы в океане.— М.: Изд ИОАН СССР, 1985.— С. 38-54
- 7. Якушев Е.В., Михайловский Г.Е. Моделирование химико-биологических циклов в Белом море: расчет сезонной изменчивости фосфора, азота и кислорода//Океанология, 1993, т. 33, N 5. C. 695-702
- 8. Владимирова О. М., Еремина Т. Р., Исаев А. В., Рябченко В. А., Савчук О. П. Моделирование растворенного органического вещества в Финском залив. Фундаментальная и прикладная гидрофизика. —2018. т. 11. №4. С.90-102
- 9. Savchuk O. P. Nutrient biogeochemical cycles in the Gulf of Riga: scaling up field studies with a mathematical model // J. Mar. Sys. 2002. 32. P. 235—280
 - 8.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет" 1. Цифровая платформа sakai: сайт дисциплины «Моделирование экосистем»
 - 8.3. Перечень программного обеспечения
 - 1.Операционные системы Windows 7,10;
 - 2. Пакет прикладных программ Microsoft Office
 - 8.4. Перечень информационных справочных систем не предусмотрено
 - 8.5. Перечень профессиональных баз данных:
 - 1. Электронно-библиотечная система elibrary;
- 2. Справочник «Биофизики России». Раздел «Библиотека». Электронный ресурс.— Режим доступа: http://www.library.biophys.msu.ru.
- 3. Сайт журнала «Ecological Modelling». Электронный ресурс.— Режим доступа: https://www.sciencedirect.com/journal/ecological-modelling

9. Материально-техническое обеспечение дисциплины

Учебная аудитории для проведения занятий лекционного типа — укомплектована специализированной (учебной) мебелью, набором демонстрационного оборудования и учебно-наглядными пособиями, обеспечивающими тематические иллюстрации, соответствующие рабочим учебным программам дисциплин (модулей).

Учебная аудитории для проведения занятий семинарского типа - укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации, мультимедийная аудитория, оснащенная компьютерами с возможностью подключения к сети "Интернет"

Учебная аудитория для групповых и индивидуальных консультаций - укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации

Учебная аудитория для текущего контроля и промежуточной аттестации - укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации.

Помещение для самостоятельной работы – укомплектовано специализированной (учебной) мебелью, оснащено компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечено доступом в электронную информационно-образовательную среду организации

10.Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности.

11. Возможность применения электронного обучения и дистанционных образовательных технологий

Дисциплина может реализовываться с применением электронного обучения и дистанционных образовательных технологий в интерактивной системе SAKAI РГГМУ (http://sakai.rshu.ru).