федеральное государственное бюджетное образовательное учреждение высшего образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра физики

Рабочая программа дисциплины

ФИЗИЧЕСКИЕ ПРОБЛЕМЫ ЭКОЛОГИИ

Основная профессиональная образовательная программа высшего образования по направлению подготовки

03.03.02 «Физика»

Направленность (профиль): **Физические исследования природных процессов**

Уровень: **Бакалавриат**

Форма обучения

Очная

Согласовано	Председатель УМС
Руководитель ОПОП	<i>Устеме</i> И.И. Палкин
Бобровский А.П.	Рекомендована решением Учебно-методического совета 19 « 2021 г., протокол № 2
	Рассмотрена и утверждена на заседании кафедры 13 апреля 2021 г., протокол № 8
	Зав. кафедрой Бобровский А.П.
	Автор-разработчик:
	Биненко В.И. Делген и Дьяченко Н.В.

Санкт-Петербург 2021

Рассмотрено и рекомендовано к испо учебный год без изменений*	ользованию в учебном процессе на/
Протокол заседания кафедры	от20 №
Рассмотрено и рекомендовано к испол	• • • • • • • • • • • • • • • • • • • •
учебный год с изменениями (см. лист измене	эний)**
Протокол заседания кафедры	от20 №

^{*}Заполняется при ежегодном пересмотре программы, если в неё не внесены изменения

^{**} Заполняется при ежегодном пересмотре программы, если в неё внесены изменения

1. Цели и задачи освоения дисциплины

Целью дисциплины "Физические проблемы экологии " является формирование у студентов знаний о безопасном взаимодействии живых организмов со средой обитания, средствах и методах защиты от негативных факторов, связанных с физическими полями естественного и техногенного происхождения.

Основные задачи дисциплины "Физические проблемы экологии ":

- освоение студентами основами и методами научных знаний о наиболее общих явлениях природы, сформировать представление о новейших вопросах и проблемах физики и экологии.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Физические проблемы экологии» для направления «03.03.02 — Физика» относится к обязательным дисциплинам цикла Б1, изучается в шестом семестре после изучения дисциплин «Теоретическая механика», «Механика сплошных сред» и «Электродинамика». Она дает теоретическую основу для освоения как курсов— «Физика конденсированного состояния», «Термодинамика. Статистическая физика. Физическая кинетика», так и специальных дисциплин — «Теория колебаний и волн», «Теория переноса электромагнитных волн в газах», «Фотохимические процессы в атмосфере» и др.

Курс рассчитан на студентов-физиков, освоивших курсы «Механика», «Молекулярная физика», «Электричество и магнетизм. Оптика», «Атомная физика. Физика атомного ядра и элементарных частиц», «Теоретическая механика», «Механика сплошных сред», «Электродинамика», «Математический анализ», «Аналитическая геометрия», «Линейная алгебра», «Дифференциальные уравнения», «Векторный и тензорный анализ», «Теория функции комплексного переменного», «Теория вероятностей и математическая статистика».

3. Перечень планируемых результатов обучения

Процесс изучения дисциплины направлен на формирование компетенции ПК-1.

Таблица 2.

		т аолица 2
Код и наимено-	Код и наименован	не Результаты обучения
вание компетенции	индикатора достижени	R
	компетенции	

ПК-1 Способен использовать специализированные знания в области физики для решения профессиональных задач отдельных этапов работ

ПК-1.1 Понимает физическую сущность процессов, происходящих в экосфере Земли, и применяет физические законы к решению задач в области гидрометеорологии, экологии

ПК-1.2 Использует специальные знания математики при решении физических задач гидрометеорологии и экологии, производит оценочные расчеты, строит математические модели процессов и понимает границы их применимости

Знать:

- -характеристику опасностей для человека и других живых организмов;
- -основные типы систем защиты человека и окружающей среды от воздействия физических полей, формируемых в технологических процессах;
- -методы и средства контроля изучаемых параметров условий жизнедеятельности;
- -последствия воздействия на человека негативных физических факторов;

Уметь:

- -оценивать степень риска, связанные с современным изменением климата;
- -создавать нормативное состояние среды обитания на производстве и в зонах отдыха человека;
- -использовать технику, не причиняя вреда окружающей природной среде;

Владеть:

- информацией об опасных и вредных физических факторах производственной среды;
- навыками использования методов защиты и технических средствах их применения; организации безаварийной работы;
- -применения различных методов защиты персонала от опасных физических факторов производственной среды и в быту.

4. Структура и содержание дисциплины

4.1. Объем дисциплины

Объем дисциплины составляет 3 зачетных единиц, 108 академических часов

 Таблица 3.

 Объем дисциплины по видам учебных занятий в академических часах

Объём дисциплины	Всего часов
	Очная форма обучения
Объем дисциплины	108
Контактная работа обучающихся с преподавателем (по видам аудиторных учебных занятий) – всего:	84
в том числе:	
лекции	56
занятия семинарского типа:	
практические занятия	28
лабораторные занятия	
Самостоятельная работа (далее – СРС) – всего:	24
в том числе:	
курсовая работа	
контрольная работа	
Вид промежуточной аттестации	зачет (6 семестр)

4.2. Структура дисциплины

No		Виды учебной работы, в т.ч. самостоятель- ная работа сту-дентов, час.		сонтр	Формируемые компетен- ции	Индикаторы достижения	
п/п	плины	Лекции	практи- ческие заня-	самостоя- тельная рабо-	Формы тек успева	Формируе	
1	Введение. Человек и среда обитания.	8	4	4	устный опрос, до- машнее зада- ние	ПК-1	ПК-1.1 ПК-1.2
2	Тема 1 Понятие о физических полях. Их типы и основные характеристики.	8	4	4	устный опрос, про- верка до- машнего за-	ПК-1	ПК-1.1 ПК-1.2

№		ная ј	•	ль- 1 сту-	Формы текущего контроля успеваемости	Формируемые компетен- ции	Достижения
п/п	плины	Лекции	практи- ческие заня-	самостоя- тельная рабо-	Формы текущего вуспеваемости	Формируеч	
	Первичные и вторичные поля.				дания		
3	Тема 2 Основы электробезопасности		4	4	устный опрос, до- машнее зада- ние, реферат	ПК-1	ПК-1.1 ПК-1.2
4	Тема 3 Защита от звуковых воздей- ствий и вибрации	8	4	4	устный опрос, проверка домашнего задания	ПК-1	ПК-1.1 ПК-1.2
5	Тема 4 Защита от электромагнитных полей (ЭМП).	8	4	4	устный опрос, проверка домашнего задания	ПК-1	ПК-1.1 ПК-1.2
6	Тема 5 Защита от лазерных излучений	8	4	2	устный опрос, проверка домашнего задания	ПК-1	ПК-1.1 ПК-1.2
7	Тема 6 Защита от ионизирующих излучений	8	4	2	устный опрос, проверка домашнего задания	ПК-1	ПК-1.1 ПК-1.2
	Итого:	56	28	24			

4.3. Содержание разделов дисциплины

ВВЕДЕНИЕ. ЧЕЛОВЕК И СРЕДА ОБИТАНИЯ

Цель, задачи и содержание дисциплины. Ее место и роль среди других наук. Проблема обеспечения безопасности человека и других живых организмов в системе "человек - среда обитания". Опасные и вредные физические факторы производственной среды. Безопасные усло-

вия на производстве и в быту (безопасное технологическое оборудование, безопасные рабочие места, правовое и организационное регулирование труда).

Тема 1. ПОНЯТИЕ О ФИЗИЧЕСКИХ ПОЛЯХ. ИХ ТИПЫ И ОСНОВНЫЕ ХАРАКТЕ- РИСТИКИ. ПЕРВИЧНЫЕ И ВТОРИЧНЫЕ ПОЛЯ

Теория близкодействия. Основные типы физических взаимодействий. Сильные, слабые, электромагнитные, гравитационные взаимодействия и их переносчики. Корпускулярноволновой дуализм, поля, частицы и их связь. Вторичные поля — температурные, звуковые, вибрационные, скорости, давления, электрических токов.

Тема 2. ЗАЩИТА ОТ ЗВУКОВЫХ ВОЗДЕЙСТВИЙ И ВИБРАЦИИ

Звук и вибрация. Основные понятия и определения. Физические характеристики и измерение. Действие на организм человека. Принципы нормирования. Физические основы звуко- и виброзащиты. Практические методы виброизоляций. Характеристика и опасность совместного воздействия вибраций, шума, ультразвука и инфразвука.

Тема 3. ОСНОВЫ ЭЛЕКТРОБЕЗОПАСНОСТИ

Основные понятия и определения. Действие электрического тока на организм человека. Опасность поражения в различных электрических сетях. Заземление, зануление. Классификация помещений по электробезопасности. Квалификационные группы персонала по электробезопасности. Напряжение шага, прикосновения. Защитные меры в электроустановках. Защитные средства, применяемые в электроустановках. Защитная изоляция: виды, роль в обеспечении электробезопасности, критические параметры. Средства индивидуальной защиты.

Защита от статического электричества.

Организационные и технические мероприятия при эксплуатации электроустановок.

Тема 4. ЗАЩИТА ОТ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ

Основные понятия и определения. Физические характеристики электромагнитных полей. Воздействие электромагнитных полей на организм человека. Тепловой и функциональный эффект. Органы человека с повышенной чувствительностью к ЭМП.

Организационные, технические и санитарно-гигиенические меры защиты от электромагнитных излучений в конкретном производстве. Нормирование интенсивности ЭМП. Расчет интенсивности ЭМП на рабочих местах в зависимости от параметров источника излучения и среды. Определение границ опасной зоны.

Тема 5. ЗАЩИТА ОТ ЛАЗЕРНЫХ ИЗЛУЧЕНИЙ

Применение лазеров в технологических процессах. Классификация лазеров по физикотехническим параметрам. Взаимодействие ЛИ с веществом.

Биологическое действие ЛИ: воздействие на глаза, кожу, внутренние органы и организм человека в целом. Опасные и вредные производственные факторы, сопутствующие эксплуатации лазеров.

Основные способы и средства защиты от ЛИ: экранирование, блокировка, сигнализация, удаление рабочих мест из лазерно-опасной зоны. Средства индивидуальной защиты.

Тема 6. ЗАЩИТА ОТ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

Основные понятия, определения, единицы измерения. Фоновое облучение человека. Нормирование ионизирующих излучений. Защита от воздействия ионизирующего излучения на производстве.

Тема 7. ФИЗИЧЕСКИЕ ПРОБЛЕМЫ В ЭКОЛОГИИ, СВЯЗАННЫЕ С СОВРЕМЕ- НЫМ ИЗМЕНЕНИЕМ КЛИМАТА

4.4. Практические занятия, их содержание

п/	№ раздела дисциплины	Коли- чество ча- сов	Наименование темы практического занятия
1-2	Основные источники энергии.	4	Повторение. Решение задач по атомной физике, ядерной физике
3-4	Электрический ток.	4	Решение задач на постоянный и переменный электрический ток, джоулево тепло, реферат
5-6	Звук и вибра- ция.	4	Решение задач на акустику. Реферат, доклад
7-8	Электромаг- нитные поля.	4	Решение задач на электромагнетизм, электромагнитные волны
9-10	Лазеры.	4	Энергия лазерного излучения, реферат
11-12	Ионизирую- щие излучения.	4	Решение задач на радиоактивность и ионизирующие излучения
13-14	Физические проблемы, связанные с современным изменением климата	4	Реферат, доклад

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Самостоятельная работа студентов является составной частью учебной работы и имеет целью закрепление и углубления полученных знаний и навыков, поиск и приобретение новых знаний, а также выполнение учебных заданий, подготовку к предстоящим занятиям, экзаменам.

Самостоятельная работа предусматривает, как правило, выполнение вычислительных работ, графических заданий к лабораторным работам, подготовку к практическим заданиям, контрольных работ.

Работа с литературой предусматривает самостоятельное изучение теоретического материала, разработку рефератов и других творческих заданий.

При самостоятельной работе над разделами дисциплины, при выполнении практических, лабораторных работ, при подготовке к тестам, опросам и к промежуточному контролю студент должен изучить соответствующие разделы основной и вспомогательной литературы по дисциплине, а также использовать указанные в перечне интернет-ресурсы.

В процессе самостоятельной учебной деятельности формируются умения: анализировать свои познавательные возможности и планировать свою познавательную деятельность; работать с источниками информации: текстами, таблицами, схемами; анализировать полученную учебную информацию, делать выводы; анализировать и контролировать свои учебные действия; самостоятельно контролировать полученные знания.

6. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Учет успеваемости обучающегося по дисциплине осуществляется по 100-балльной шкале.

Максимальное количество баллов по дисциплине за один семестр – 100:

- максимальное количество баллов за выполнение всех видов текущего контроля 60;
- максимальное количество баллов за посещение лекционных занятий 10;
- максимальное количество баллов за прохождение промежуточной аттестации 30;

6.1. Текущий контроль

Типовые задания, методика выполнения и критерии оценивания текущего контроля по разделам дисциплины представлены в Фонде оценочных средств по данной дисциплине.

6.2. Промежуточная аттестация

Форма промежуточной аттестации по дисциплине – Зачет в конце 6-го семестра.

Форма проведения зачета: устно по билетам

а). Перечень вопросов для устного опроса и зачета

- 1. Предмет, методы, цели, задачи физической экологии
- 2. Основные физические явления и методы их описания.
- 3. Основные взаимодействия, поля, частицы, вторичные взаимодействия.
- 4. Техногенные физические загрязнения и естественный фон Земли.
- 5. Основные типы загрязнений.
- 6. Классификация техногенных физических загрязнений.
- 7. Строение солнца. Расчёт энергии ядерных и термоядерных процессов.
- 8. Температура солнца, закон Стефана-Больцмана и солнечная постоянная.
- 9. Магнитосфера Земли.
- 10. Атмосферное электричество. Молнии. Огни Эльма. Северные сияния.
- 11. Кинематическое и динамическое описание упругих волн.
- 12. Закон Гука, волновое уравнение и его решение.
- 13. Излучение точечного сферического источника звука, излучение протяжённого источника.
- 14. Понятие о плотности и потоке плотности физической величины.
- 15. Общие сведения о звуке, шуме. Логарифмические уровни громкости звука и их сложение.
- 16. Понятие о шуме. Классификация шумов
- 17. Источники шума естественного и техногенного происхождения.
- 18. Биологическое действие шумов. Нормирование шумов.
- 19. Методы защиты от шумов.
- 20. Понятие о вибрациях. Источники вибраций. Биологическое действие вибраций.

- 21. Методы и средства защиты от вибраций.
- 22. Электрический ток, металлы, диэлектрики, полупроводники.
- 23. Законы Ома, Джоуля Ленца, принципы расчёта электрических цепей.
- 24. Изоляция, шаговое напряжение. Примеры расчёта шагового напряжения.
- 25. Заземление и зануление, как защита от поражения электрическим током.
- 26. Действие переменного и постоянного тока на человека, предельно допустимые токи.
- 27. Электромагнитные поля. Источники электромагнитных полей.
- 28. Биологическое действие электромагнитных полей. Защита от электромагнитных полей.
- 29. Общие сведения об инфракрасном излучении. Его воздействие на живые ткани
- 30. Радиационный и тепловой баланс Земли.
- 31. Тепловое загрязнение.
- 32. Энтропия и тепловое излучение Земли.
- 33. Общие сведения об ультрафиолетовом излучении (УФ). Источники УФ излучения. Биологическое действие УФ излучения.
- 34. Механизм образования и разрушения озонового слоя. Защитные свойства атмосферы от действия УФ излучения.
- 35. Понятие о лазерном излучении. Классификация лазеров. Свойства лазерного излучения. Лазерное зонирование атмосферы.
- 36. Биологическое действие лазерного излучения.
- 37. Ионизирующее излучение. Радиоактивные материалы. Законы радиоактивного распала.
- 38. Виды ионизирующих излучений. Действие их на живое и человека.
- 39. Законы прохождения и взаимодействия ионизирующего излучения с веществом
- 40. Способы защиты от ионизирующих излучений.
- 41. Единицы измерения ионизирующих излучений. Методы наблюдений и регистрации ионизирующих излучений.
- 42. Биологическое действие продуктов радиоактивности. Нормирование. Средства индивидуальной защиты.
- 43. Хранение, перевозка и ликвидация радиоактивных продуктов.

6.3. Балльно-рейтинговая система оценивания

Таблица 5.

Вид учебной работы, за которую ставятся баллы	Баллы
Посещение лекционных занятий	0-10
Устный опрос 1-7	0-3
Реферат, доклад	0-5
Выполнение домашних заданий № 1-7	0-3 за каждую рабо-
	ту
Дополнительные баллы	13
Промежуточный контроль - зачет	30
ИТОГО	0-100

Минимальное количество баллов для допуска до промежуточной аттестации составляет 40 баллов при условии выполнения всех видов текущего контроля.

1. Таблина 8.

Балльная шкала итоговой оценки на зачете (6 семестр)

Building High and the object of the sales (0 to heart)		
Оценка	Баллы	
зачтено	40-100	

незачтено	0-39
nesa neno	0 37

7. Методические рекомендации для обучающихся по освоению дисциплины

Методические рекомендации ко всем видам аудиторных занятий, а также методические рекомендации по организации самостоятельной работы, в том числе по подготовке к текущему контролю и промежуточной аттестации представлены в Методических рекомендации для обучающихся по освоению дисциплины «Физика».

Вид учебных занятий	Организация деятельности студента
Лекции	В ходе лекционных занятий необходимо вести конспектирование учебного материала. Обращать внимание на формулировки основных дефиниций, законов, процессов, явлений. Подробно записывать математические выводы формул. Желательно оставить в рабочих конспектах поля, на которых делать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений.
Внеаудиторная работа	Представляет собой вид занятий, которые каждый студент организует и планирует самостоятельно. Самостоятельная работа студентов включает: — самостоятельное изучение разделов дисциплины; — подготовка к выполнению лабораторных работ, выполнение вычислительных и графических заданий к лабораторным работам, подготовку к практическим занятиям, решение индивидуальных задач; — выполнение дополнительных индивидуальных творческих заданий; — подготовку рефератов, сообщений и докладов.
Подготовка к зачету	Зачет служит формой проверки выполнения студентами лабораторных и контрольных работ, усвоения материала практических занятий. Экзамен имеет целью проверить и оценить уровень теоретических знаний, умение применять их к решению практических задач, а также степень овладения практическими умениями и навыками в объеме требований учебных программ. Подготовка к экзамену предполагает изучение конспектов лекций, рекомендуемой литературы и других источников, повторение материалов практических занятий К экзамену допускаются студенты, выполнившие все требования учебной программы и сдавшие зачет по данной дисциплине, предусмотренный в текущем семестре.

8. Учебно-методическое и информационное обеспечение дисциплины

8.1. Перечень основной и дополнительной учебной литературы

а) Основная литература:

а) основная литература:

- 1. Куклев Ю.И. Физическая экология. Учебное пособие для вузов. Изд. 2-е, М., Высшая школа, 2003, 357 с.
- 2. Белов С.В. Безопасность жизнедеятельности. Учебник для вузов./Ред. С.В. Белов. М., Высшая школа, 2005, 606 с.
- **3.** Биненко В.И., Храмов Г.Н., Яковлев В.В. Чрезвычайные ситуации в современном мире и проблемы безопасности жизнедеятельности., СПб, полиграфический центр ИВТОБ СПбГПУ(2004) 400с.
- 4. Физическая экология: Краткий конспект лекций для студентов всех специальностей. Под ред. О.Н. Русака. Л.: 1991. -147с.
- 5. Физическая экология: Конспект лекций / под ред. С.В.Белова. -М.: ВАСОТ. -ч.1, 1992 -136 с; ч.2, 1993. -164с.
- 6. Источник из ЭБС.

б) дополнительная литература:

- **6.** Биненко В.И., Донченко В.К., Растоскуев В.В. Риски и экологическая безопасность природно-хозяйственных систем . СПбГУ(2011) 328 с.
- 7. Лапин В.Л., Попов В.М., Рыжков Ф.Н., Томаков В.И. Безопасное взаимодействие человека с техническими системами. Курск.: Курский Гос. Техн. Унив-тет, 1995. 223с.
- 8. Усманов С.М. Радиация . Справочные материалы М.: Гуманит, изд. Центр ВЛА-ДОС. 2001.-176с.
- 9. Кукин П.П., Лапин В.Л., Попов В.М. и др. Основы радиационной безопасности в жизнедеятельности человека. Курск.: Курский Гос.Техн.Унив-тет, 1995.-144с.
- 10. Охрана труда в машиностроении / под ред. Е.Я.Юдина и С.В.Белова. М.: Машиностроение, 1983. -432с.

в) программное обеспечение и Интернет-ресурсы:

http://istina.msu.ru/

http://libed.ru/

http://aurasvit.com/archives/128

http://ecologyproblems.ru/11-ekologicheskie-problemy-zagryazneniya-atmosfery-vozdukha

- 8.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"
- 1. http://pskgu.ru/ebooks/okphyzikc.html Учебные пособия по общей физике.
- 2. http://h91102a0.bget.ru/elBook/Titul.htm *Михтеева Е.Ю., Соловьева О.П.* Физика твердого тела. Электронное учебное пособие г.р. № 2011620517. 2011 г.
 - 3. http://pskgu.ru/ebooks/tf.html . Теоретическая физика.
 - 4. http://physics.nad.ru/ физика в анимациях
 - 5. http://dmitryukts.narod.ru/kopilka/video.html- опыты по физике.
 - 6. http://lectoriy.mipt.ru/lecture?category=Physics&lecturer Видеолекции и открытые образовательные материалы ФизТеха. Лекции по Физике.
 - 7. https://sites.google.com/site/rggmustud/ Актуальная информация для студентов, проходящих обучение физике в РГГМУ.
 - 8.3. Перечень программного обеспечения
 - 1. Microsoft Office офисный пакет приложений
 - 8.4. Перечень информационных справочных систем
 - 1. Электронная библиотека ЭБС «Znanium» (http://znanium.com/)
 - 2. Электронная библиотека ЭБС «Юрайт» (https://biblio-online.ru/)
- 3. Информационная система доступа к российским физическим журналам и обзорам ВИНИТИ РАН (http://www/viniti.ru).
- 4. ЭБС Лань Коллекция «Инженерно-технические науки Издательство Горячая линия-Телеком https://e.lanbook.com/books/931?publisher=6171
 - 8.5. Перечень профессиональных баз данных
 - 1. Научная электронная библиотека eLIBRARY.RU https://www.elibrary.ru/
 - 2. Электронная библиотечная система РГГМУ «ГидрометеоОнлайн» http://elib.rshu.ru/

9. Материально-техническое обеспечение дисциплины

Учебная аудитории для проведения занятий лекционного типа — укомплектована специализированной (учебной) мебелью, набором демонстрационного оборудования и учебнонаглядными пособиями, обеспечивающими тематические иллюстрации, соответствующие рабочим учебным программам дисциплин (модулей).

Учебная аудитории для проведения занятий семинарского типа - укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации.

Лаборатория механики и молекулярной физики, лаборатория электричества и магнетизма, лаборатория оптики и ядерной физики — укомплектованы специализированной (учебной) мебелью, приборами, оборудованием, лабораторными установками, стендами, техническими средствами обучения для проведения лабораторных работ.

Учебная аудитория для групповых и индивидуальных консультаций - укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации.

Учебная аудитория для текущего контроля и промежуточной аттестации - укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации.

Помещение для самостоятельной работы — укомплектовано специализированной (учебной) мебелью, оснащено компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечено доступом в электронную информационно-образовательную среду организации

10. Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности.

11. Возможность применения электронного обучения и дистанционных образовательных технологий

Дисциплина может реализовываться с применением электронного обучения и дистанционных образовательных технологий