федеральное государственное бюджетное образовательное учреждение высшего образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра Информационных технологий и систем безопасности

Рабочая программа дисциплины ПРОГРАММИРОВАНИЕ

Основная профессиональная образовательная программа высшего образования по направлению подготовки

03.03.02 «Физика»

Направленность (профиль):

Физические исследования природных процессов Уровень:

Бакалавриат

Форма обучения **Очная**

Грызунов В.В.

Рассмотрено и рекомендовано к использованию в учебном процессе на/_	
учебный год без изменений*	
Протокол заседания кафедры от20 №	
Рассмотрено и рекомендовано к использованию в учебном процессе	на
/ учебный год с изменениями (см. лист изменений)**	
————————————————————————————————————	

^{*}Заполняется при ежегодном пересмотре программы, если в неё не внесены изменения

^{**} Заполняется при ежегодном пересмотре программы, если в неё внесены изменения

1. Цель и задачи освоения дисциплины

Рабочая программа дисциплины «Программирование» (далее — дисциплина) составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по специальности 03.03.02 «Физика, профиль Физические исследования природных процессов».

Цель освоения дисциплины — формирование у обучающихся способности проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные с помощью компьютерных программ (далее — программ).

Задачи:

- освоение методик для проведения физических исследований с помощью программ;
- формирование навыков и умений по обработке экспериментальных данных и их представление в виде таблиц, графиков, диаграмм с помощью программ.

2. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина относится к обязательной части блока 1 «Дисциплины (модули)», преподаётся в 1 и 2 семестрах.

Для успешного усвоения данной дисциплины необходимо, чтобы обучаемые владели знаниями, умениями и навыками, сформированными в процессе обучения в средней школе по предметам:

- «Информатика»,
- «Алгебра»,
- «Физика»,
- «Русский язык»,
- «Иностранный язык».

Знания и умения, полученные обучаемыми по дисциплине «Программирование», служат фундаментом для изучения следующих дисциплин:

- Вычислительная физика;
- Численные методы и математическое моделирование;

3. Перечень планируемых результатов обучения

Процесс изучения дисциплины направлен на формирование компетенций: ОПК-2 Способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные.

Общепрофессиональные компетенции

Таблица 1.

	петенции	
Код и наименование	Код и наименование	Результаты обучения
общепрофессиональ	индикатора достижения	
ной компетенции	общепрофессиональной	
	компетенции	
ОПК-2 Способен	ОПК-2.1 Применяет	Знать:
проводить научные	разработанные методики для	– правила ведения
исследования	проведения физических	информационного поиска
физических объектов,	исследований.	для проведения физических
систем и процессов,	ОПК-2.2 Производит обработку	исследований;
обрабатывать и	экспериментальных данных и их	– способы
представлять	представление в виде таблиц,	представления данных в

экспериментальные	графиков, диаграмм	ЭВМ, в том числе в виде
данные		таблиц графиков и диаграмм;
		– основные операторы;
		– роль и способы
		применения мягкого
		моделирования при
		исследовании физических
		процессов
		Уметь:
		– декомпозировать
		программу для обработки
		экспериментальных данных;
		– визуализировать
		экспериментальные данные в
		виде графиков, таблиц и
		диаграмм.
		Владеть:
		— навыком
		алгоритмизации проведения
		физических исследований
		для составления программы
		– приёмами
		тестирования и отладки
		программ, проводящих
		исследование физических
		процессов

4. Структура и содержание дисциплины

4.1. Объем дисциплины

Объем дисциплины составляет 4 зачетные единицы, 144 академических часа.

Таблица 2. Объем дисциплины по видам учебных занятий в академических часах

Объём дисциплины	Очна	я форма обучения, в	всего часов
		Семестр 1	Семестр 2
Объем дисциплины	144		
Контактная работа	56	28	28
обучающихся с			
преподавателем (по видам			
аудиторных учебных занятий)			
– всего:			
в том числе:	-	-	-
лекции	28	14	14
занятия семинарского типа:			
практические занятия			
лабораторные занятия	28	14	14
Самостоятельная	88	44	44
работа (далее – СРС) –			
всего:			
в том числе:	-	-	-
курсовая работа	60	0	60
контрольная работа			
Вид промежуточной	-	зачет	экзамен
аттестации			

Структура дисциплины для очной формы обучения

Nº	Раздел / тема дисциплины	ттр	раб сам на	ы учеб оты, в остоят я рабо (ентов,	т.ч. ель та	Формы текущего контроля успеваемости	Формируемые компетенции	Индикаторы достижения компетенций
		Семестр	Лекции	Лабораторные работы	CPC			
1.	Введение	1	2	2	2	Лабораторная работа №1, ответ на зачёте	ОПК-2	ОПК-2.1, ОПК-2.2
2.	Поисковые машины и информационный поиск	1	2	2	2	Лабораторная работа №1, ответ на зачёте		
3.	Представление данных в ЭВМ	1	2	2	2	Лабораторная работа №2, ответ на зачёте		
4.	Операторы ввода/вывода	1	2	2	2	Лабораторная работа №2, ответ на зачёте		
5.	Алгоритм и его свойства	1	2	2	2	Лабораторная работа №3, ответ на зачёте		
6.	Операторы ветвления и циклы	1	2	2	2	Лабораторная работа №3, ответ на зачёте		
7.	Подпрограмм ы, процедуры и функции	1	2	2	2	Лабораторная работа №4, ответ на зачёте		
8.	Визуализация данных, массивов	2	2	2	2	Лабораторная работа №4, ответ на экзамене		
9.	Отладка и тестирование программ	2	2	2	2	Лабораторная работа №5, ответ на экзамене		
10.	Функциональн ое программирова ние	2	2	2	2	Лабораторная работа №5, ответ на экзамене		
11.	Мягкое моделирование	2	2	2	2	Лабораторная работа №6, ответ		

	физических процессов					на экзамене
12.	-	2	2	2	2	Лабораторная работа №6, ответ на экзамене
13.	Средства проектировани я компьютерных программ	2	2	2	2	Лабораторная работа №7, ответ на экзамене
14.	Заключение	2	2	2	2	Лабораторная работа №7, ответ на экзамене
	ИТОГО	-	28	28	28	-

4.3. Содержание разделов/тем дисциплины

В ходе обучения формируется компетенция ОПК-2

4.3.1 Введение

Роль программирования и компьютерного моделирования в жизни физика. Связь физики, математики и программирования. Влияние вычислительной техники на развитие физики

4.3.2 Поисковые машины и информационный поиск

Организация данных в сети Интернет. Основные поисковые сервисы. Правила формулирования и составления поисковых запросов.

4.3.3 Представление данных в ЭВМ

Hardware и Software. Иерархия памяти в ЭВМ. Способы их представления данных. Типы данных. Связь типа данных и выделяемой памяти. Понятие переменной, константы. Файлы. Базы данных. Массивы. Произвольные структуры. Операции с данными различных типов и массивами.

4.3.4 Операторы ввода/вывода

Понятие ввода/вывода. Устройства ввода/вывода по умолчанию. Особенности обмена данными с файловой системой и базами данных. Диалоговый режим.

4.3.5 Алгоритм и его свойства

Цели для алгоритма (SMART), простейшие операции. Свойства алгоритма. Способы записи алгоритмов. Понятие линейной программы.

4.3.6 Операторы ветвления и циклы

Условный и безусловный переход в программе. Метки. Операторы if и case. Оператор GoTo. Способы организации циклов. Операторы for и while.

4.3.7 Подпрограммы

Понятие подпрограммы. Процедура. Функция. Особенности применения.

4.3.8 Визуализация данных

Способы и инструменты визуализации данных.

4.3.9 Отладка и тестирование программ

Режим отладки. Ручное тестирование и отладка. Автоматизированное тестирование и отладка. Выполнение программы по шагам. Работа с таблицами переменных.

4.3.10 Функциональное программирование

Особенности применения функционального программирования. Наиболее распространённые средства функционального программирование. Описание физических процессов средствами функционального программирования.

4.3.11 Мягкое моделирование физических процессов

Основные понятия. Динамическая система. Исследовательская система А.Пуанкаре. Аттракторы. Переходные и установившиеся режимы. Способы вывода зависимостей физических величин через линейные (ряд Тейлора) или степенные зависимости. Бритва Оккама. Составление дифференциальных уравнений для физических процессов.

4.3.12 Формализация исходных данных и интерпретация результатов

Общий алгоритм проведения исследований с помощью компьютерных программ. Уровни абстракции. Правила формализации исходных данных и интерпретации результатов моделирования. Проверка адекватности модели. Планирование вычислительного эксперимента.

4.3.13 Средства проектирования компьютерных программ IDEF 0. UML. Case-средства.

4.3.14 Заключение

Тренды в применении программирования и компьютерного моделирования. Применение искусственного интеллекта, экспертных систем, Data Mining для поиска закономерностей и исследования физических процессов.

4.4. Содержание занятий семинарского типа

Содержание лабораторных занятий

Таблица 4.

№ темы дисциплины	Тематика лабораторных занятий	Всего часов	В том числе часов практической подготовки
1, 2	Исследование возможностей MS Office	4	4
3, 4	Работа с макросами	4	4
5, 6	Начало работы с Матлаб	4	4
7, 8	Графики функций двух переменных	4	4
9, 10	Решение простых физических задач	4	4
11, 12	Моделирование колебаний	4	4
13, 14	StarUML	4	4

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

а) основная литература:

- 1. Есипов А.А., Сахонов Л.И., Юдович В.И. Практикум по обыкновенным дифференциальным управнениям. М.: Вузовская книга, 2001. 396 с. ISBN 5-89522-140-8.
- 2. Грызунов В.В. Аналитическая модель целостной информационной системы // Доклады ТУСУР.— 2009.— № 1(19), ч.1.— С.226-230.
- 3. Муха Ю.П., Авдеюк О.А., Королёва И.Ю. Алгебраическая теория синтеза сложных систем: Монография/ВолгГТУ, Волгоград, 2003. 320 с.
- 4. Слепцова Л.Д. Программирование на VBA в Microsoft Office 2010: Диалектика, 2010.- 443c. ISBN: 978-5-8459-1663-1
- 5. Малинецкий Г.Г. Хаос. Структуры. Вычислительный эксперимент: Введение в нелинейную динамику. М.: Эдиториал УРСС, 2000. 256 с.

- 6. Коткин Г.Л., Черкасский В.С. Компьютерное моделирование физических процессов с использованием MATLAB: Учеб. Пособие / Новосиб. ун-т. Новосибирск, 2001. 173 с.
- 7. Маннинг, Кристофер Д., Рагхаван, Прабхакар, Шютце, Хайнрих. Введение в информационный поиск.: Пер. с англ. М.: ООО «И.Д. Вильямс», 2011.-528 с. ISBN 978-5-8459-1623-5(рус).

б) дополнительная литература:

- 1. Хорев В.Д. Самоучитель программирования на VBA в Microsoft Office. К.: Юниор, 2001. 320 с., ил.
- 2. ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем».
- 3. Встроенная справка в MS Word, MS Excel.
- 4. Встроенная справка в VBA.
- 5. Встроенная справка в Matlab.

в) программное обеспечение и Интернет-ресурсы:

- 1. Программирование в Microsoft Office для пользователей http://www.askit.ru/custom/vba office/vba office plan.htm [Электронный ресурс]. Режим доступа: свободный
- 2. Процедуры «FUNCTION» и «SUB» в VBA. http://office-guru.ru/excel/procedury-function-i-sub-v-vba-461.html [Электронный ресурс]. Режим доступа: свободный
- 3. Свойства объекта CHART. http://www.taurion.ru/excel/pril1/32 [Электронный ресурс]. Режим доступа: свободный
- 4. Блок-схемы алгоритмов. ГОСТ. Примеры https://pro-prof.com/archives/1462 [Электронный ресурс]. Режим доступа: свободный
- 5. Оформление графиков http://sernam.ru/lect_matlab.php?id=15
- 6. Графики в Matlab. Построение графиков и таблиц в Matlab. http://life-prog.ru/view_zam.php?id=54 [Электронный ресурс]. Режим доступа: свободный
- 7. Уравнения поверхностей второго порядка. http://infotables.ru/matematika/57-analiticheskaya-geometriya-v-prostranstve/576-poverkhnosti-vtorogo-poryadka
 [Электронный ресурс]. Режим доступа: свободный
- 8. Основные формулы по физике КОЛЕБАНИЯ И ВОЛНЫ. http://infotables.ru/fizika/94-osnovnye-formuly-po-fizike-kolebaniya-i-volny. [Электронный ресурс]. Режим доступа: свободный

6. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Учет успеваемости обучающегося по дисциплине осуществляется по 100-балльной шкале. Максимальное количество баллов по дисциплине за один семестр – 100:

- максимальное количество баллов за выполнение всех видов текущего контроля 75;
 - максимальное количество баллов за посещение лекционных занятий 5;
- максимальное количество баллов за прохождение промежуточной аттестации 20;

6.1. Текущий контроль

Типовые задания, методика выполнения и критерии оценивания текущего контроля по разделам дисциплины представлены в Фонде оценочных средств по данной дисциплине.

6.2. Промежуточная аттестация

Форма промежуточной аттестации по дисциплине

Семестр	Форма промежуточной аттестации
1	Зачёт, устно по билетам
2	Курсовая работа
2	Экзамен, устно по билетам

Перечень вопросов для подготовки к зачету:

ОПК-2

- 1. Понятие информации и данных.
- 2. Способы представления и обработки данных.
- 3. Состав языка программирования.
- 4. Классификация языков программирования по Хомскому.
- 5. Системы счисления. Особенности перевода из двоичной в шестнадцатеричную систему счисления и обратно.
- 6. Системы счисления. Особенности двоично-десятичной системы счисления.
- 7. Основные операции, выполняемые процессором.
- 8. Сложение двоичных чисел в прямом и обратном коде.
- 9. Сложение двоичных чисел в прямом и дополнительном коде.
- 10. Особенности обработки чисел с фиксированной запятой, имеющих знак.
- 11. Битовые операции. Логическое умножение.
- 12. Битовые операции. Логическое сложение.
- 13. Битовые операции. Исключающее или.
- 14. Битовые операции. Инверсия.
- 15. Константа в языке программирования. Назначение. Особенности применения.
- 16. Переменная в языке программирования. Назначение. Особенности применения.
- 17. Понятие типа данных. Целое число.
- 18. Понятие типа данных. Вещественное число.
- 19. Понятие типа данных. Строка.
- 20. Понятие типа данных. Массив.
- 21. Основные операции со массивами.
- 22. Основные операции со строками.
- 23. Понятие алгоритма. Свойства алгоритмов.
- 24. Понятие алгоритма. Способы записи алгоритмов.
- 25. Результаты работы алгоритма. Измеримость и достижимость.
- 26. Результаты работы алгоритма. Исполнимость и однозначность.
- 27. Результаты работы алгоритма. Измеримость и тайминг.
- 28. Визуализация данных. Построение графиков и диаграмм.
- 29. Способы отладки и тестирования программ.
- 30. Декомпозиция задач на подзадачи. Применение IDEF0.
- 31. IDEF0. Назначение и применение «точки зрения».
- 32. Особенности работы с «неизмеримыми» величинами

Перечень вопросов для подготовки к экзамену:

ОПК-2

- 1. Функциональное программирование в физике. Инструментарий, возможности и ограничения.
- 2. Мягкое моделирование физических процессов. Подходы и особенности.
- 3. Исследовательская программа А.Пуанкаре.
- 4. Моделирование переходных и установившихся режимов. Реализация в среде программирования.

- 5. Вывод физических зависимостей через линейные уравнения. Реализация в среде программирования.
- 6. Вывод физических зависимостей через степенные уравнения. Реализация в среде программирования.
- 7. Составление физических процессов с помощью дифференциальных уравнений. Реализация в среде программирования.
- 8. Организация ветвления в MATLAB. Оператор if. Условно-графическое обозначение (УГО), пример применения.
- 9. Организация ветвления в MATLAB. Оператор case. Условно-графическое обозначение (УГО), пример применения.
- 10. Работа с циклами в MATLAB. Оператор for. Условно-графическое обозначение (УГО), пример применения.
- 11. Работа с циклами в MATLAB. Оператор do while. Условно-графическое обозначение (УГО), пример применения.
- 12. Подпрограммы. Назначение и классификация.
- 13. Способы передачи данных в подпрограмму в МАТLAB.
- 14. Функции в MATLAB. Назначение. Условно-графическое обозначение (УГО), пример применения.
- 15. Процедуры в МАТLAB. Назначение. Условно-графическое обозначение (УГО), пример применения.
- 16. Операторы ввода данных в MATLAB.
- 17. Операторы вывода данных в MATLAB.
- 18. Особенности ввода-вывода в файл в МАТLAВ.
- 19. Особенности ввода-вывода в табличную базу данных в МАТLAВ.
- 20. Визуализация данных. Построение диаграмм в MATLAB.
- 21. Визуализация данных. Отображение нескольких величин на одной диаграмме в MATLAB.
- 22. Визуализация данных. Работа с осями координат в MATLAB.
- 23. Общий алгоритм проведения исследований с помощью компьютерных программ.
- 24. Уровни абстракции в компьютерном моделировании. Метод, методика, инструкция.
- 25. Планирование вычислительного эксперимента.
- 26. Правила формализации исходных данных для проведения компьютерного моделирования.
- 27. Интерпретации результатов компьютерного моделирования.
- 28. Проверка адекватности компьютерной модели и определение её применимости.
- 29. Проектирование компьютерных программ с помощью IDEF0.
- 30. Проектирование компьютерных программ с помощью UML.
- 31. Применение CASE-средств.
- 32. Использование Data Mining для поиска и анализа физических закономерностей.
- 33. Искусственный интеллект и экспертные системы в исследовании физических процессов.

Курсовая работа

Перечень тем и критерии оценивания курсовой работы представлены в Фонде оценочных средств.

Методика выполнения курсовой работы представлена в Методических рекомендациях для обучающихся по освоению дисциплины «Программирование».

6.3. Балльно-рейтинговая система оценивания

Таблица 6.

Вид учебной работы, за которую ставятся баллы	Баллы
Посещение лекционных занятий	0-5
Лабораторная работа №1	0-25
Лабораторная работа №2	0-25
Лабораторная работа №3	0-25
Промежуточная аттестация	0-20
ИТОГО	0-100

Распределение баллов по видам учебной работы во 2 семестре

Вид учебной работы, за которую ставятся баллы	Баллы
Посещение лекционных занятий	0-5
Лабораторная работа №4	0-10
Лабораторная работа №5	0-10
Лабораторная работа №6	0-10
Лабораторная работа №7	0-10
Курсовая работа	0-35
Промежуточная аттестация	0-20
ИТОГО	0-100

Минимальное количество баллов для допуска до промежуточной аттестации составляет 40 баллов при условии выполнения всех видов текущего контроля.

Таблица 7.

Балльная шкала итоговой оценки на зачете

Оценка	Баллы
Зачтено	75-100
Незачтено	0-74

Таблица 8.

Балльная шкала итоговой оценки на экзамене

Оценка	Баллы
Отлично	85-100
Хорошо	65-84
Удовлетворительно	40-64
Неудовлетворительно	0-39

Курсовая работа

Таблица 17.

Балльная шкала итоговой оценки курсовой работы

Оценка	Баллы
Отлично	27-35
Хорошо	20-26
Удовлетворительно	14-19
Неудовлетворительно	0-13

7. Методические рекомендации для обучающихся по освоению дисциплины

Методические рекомендации ко всем видам аудиторных занятий, а также методические рекомендации по организации самостоятельной работы, в том числе по подготовке к текущему контролю и промежуточной аттестации представлены в Методических рекомендации для обучающихся по освоению дисциплины «Название дисциплины».

8. Учебно-методическое и информационное обеспечение дисциплины

8.1. Перечень основной и дополнительной учебной литературы

а) основная литература:

- 1. Слепцова Л.Д. Программирование на VBA в Microsoft Office 2010: Диалектика, 2010.- 443c. ISBN: 978-5-8459-1663-1
- 2. Малинецкий Г.Г. Хаос. Структуры. Вычислительный эксперимент: Введение в нелинейную динамику. М.: Эдиториал УРСС, 2000. 256 с.
- 3. Коткин Г.Л., Черкасский В.С. Компьютерное моделирование физических процессов с использованием MATLAB: Учеб. Пособие / Новосиб. ун-т. Новосибирск, 2001. 173 с.

б) дополнительная литература:

- 1. Хорев В.Д. Самоучитель программирования на VBA в Microsoft Office. К.: Юниор, 2001. 320 с., ил..
- 2. ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем».
- 3. Встроенная справка в MS Word, MS Excel.
- 4. Встроенная справка в VBA.
- 5. Встроенная справка в Matlab.
 - 8.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"
- 1. Программирование в Microsoft Office для пользователей http://www.askit.ru/custom/vba_office/vba_office_plan.htm [Электронный ресурс]. Режим доступа: свободный
- 2. Процедуры «FUNCTION» и «SUB» в VBA. http://office-guru.ru/excel/procedury-function-i-sub-v-vba-461.html [Электронный ресурс]. Режим доступа: свободный
- 3. Свойства объекта CHART. http://www.taurion.ru/excel/pril1/32 [Электронный ресурс]. Режим доступа: свободный
- 4. Блок-схемы алгоритмов. ГОСТ. Примеры https://pro-prof.com/archives/1462 [Электронный ресурс]. Режим доступа: свободный
- 5. Оформление графиков http://sernam.ru/lect_matlab.php?id=15
- 6. Графики в Matlab. Построение графиков и таблиц в Matlab. http://life-prog.ru/view_zam.php?id=54 [Электронный ресурс]. Режим доступа: свободный
- 7. Уравнения поверхностей второго порядка. http://infotables.ru/matematika/57-analiticheskaya-geometriya-v-prostranstve/576-poverkhnosti-vtorogo-poryadka
 [Электронный ресурс]. Режим доступа: свободный
- 8. Основные формулы по физике КОЛЕБАНИЯ И ВОЛНЫ. http://infotables.ru/fizika/94-osnovnye-formuly-po-fizike-kolebaniya-i-volny. [Электронный ресурс]. Режим доступа: свободный
 - 8.3. Перечень программного обеспечения
 - 1. MS Windows 7 или выше;
 - 2. MS Office;
 - 3. MatLab.

9. Материально-техническое обеспечение дисциплины

Лекции: аудитория с мультимедиа, лабораторные работы: компьютерный класс, помещение для самостоятельной работы: компьютерный класс.

10. Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности.

11. Возможность применения электронного обучения и дистанционных образовательных технологий

Дисциплина может реализовываться с применением электронного обучения и дистанционных образовательных технологий.