федеральное государственное бюджетное образовательное учреждение высшего образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра метеорологических прогнозов

Рабочая программа дисциплины

Б1.В.ДВ.01.02.05 Основы физики околоземного космического пространства

Основная профессиональная образовательная программа высшего образования по направлению подготовки

05.03.05 Прикладная гидрометеорология

Направленность (профиль): **Метеорология, спутниковые и цифровые технологии**

Уровень **Бакалавриа**т

Форма обучения Очная/заочная

Согласовано Руководитель ОПОП

Восканян К.Л.

Утверждено

Проректор по учебной работе

Н.О. Верещагина

Рекомендована решением

Ученого совета метеорологического факультета 30.06.2023 г., протокол № 12

Рассмотрена и утверждена на заседании кафедры метеорологических прогнозов

05.06.2023 г., протокол № 10

Зав. кафедрой Ани

Анискина О.Г.

Автор-разработчик: д.ф.-м.н. Дробжева Я.В.

1. Цель и задачи освоения дисциплины

Цель освоения дисциплины — сформировать профессиональную компетенцию, а также необходимый объем фундаментальных и прикладных знаний, умений и навыков, необходимыми для понимания физики околоземного космического пространства и ее прикладных аспектов.

Залачи:

1. Сформировать знание:

- об основных понятиях физики околоземного космического пространства;
- о структуре атмосферы Земли, ионосфере и ее роли в космическом пространстве;
- о происхождении и основных характеристиках магнитного поля Земли, взаимодействии магнитосферы с солнечным ветром;
- о солнечном излучении и солнечном ветре, геофизических процессах в околоземном пространстве;
- о радиационной обстановке в космосе и воздействии космической среды на космические аппараты, связь и коммуникации.

2. Сформировать умение:

- выполнять расчеты параметров атмосферы для различных условий солнечной и геомагнитной активности, включая ионосферу;
- определять характеристики геомагнитного поля в целях их использования для полета ракеты.

3. Сформировать владение:

- Методами расчета по моделям атмосферы, ионосферы и геомагнитного поля;
- методами прогнозирования индекса геомагнитной активности.

2. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина относится к части, формируемой участниками образовательных отношений основной профессиональной образовательной программы, изучается в 5 семестре очной формы обучения и на 3 курсе заочной формы обучения для освоения профессиональных компетенций.

Изучению предшествуют следующие дисциплины:

«Математика», «Физика», «Прикладная математика», «Прикладная физика», «Вычислительная математика» «Теория вероятностей и математическая статистика», «Компьютерные технологии в профессиональной деятельности», «Статика и термодинамика атмосферы», «Радиация в атмосфере».

Изучается параллельно в 5 семестре очной формы обучения и на 3 курсе заочной формы обучения с такими дисциплинами как:

«Космическая метеорология», «Динамика атмосферы», «Аэрономия средней атмосферы», «Общая циркуляция атмосферы».

Дисциплина необходима для изучения дисциплин: «Моделирование климата и его изменений», «Геофизическое обеспечение безопасности эксплуатации техники», «Обслуживание международной аэронавигации», может быть использована при выполнении научно-исследовательской работы, в преддипломной практике, а также при написании выпускной квалификационной работы бакалавра.

3. Перечень планируемых результатов обучения

Процесс изучения дисциплины направлен на формирование компетенций: ПК-2.

Таблица 1. Компетенции

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Результаты обучения
ПК-2. Способен анализировать явления и процессы природной среды, выявлять их закономерности	ПК-2.1. Знает о закономерностях и аномалиях происходящих процессов в природной среде.	Знать: — основные понятия физики околоземного пространства, геофизические процессы космического пространства
		Уметь: — рассчитывать параметры атмосферы для различных гелиофизических условий.
		Владеть: — методами определения взаимосвязи между различными процессами, происходящими в околоземном космическом пространстве.
	ПК-2.2. Умеет осуществлять анализ явлений и процессов, происходящих в природной среде, на основе данных наблюдений, экспериментальных и модельных данных.	Знать: — алгоритмы использования экспериментальных данных и данных наблюдений для анализа явлений околоземного
		космического пространства. Уметь: проводить анализ данных наблюдений и модельных расчетов параметров характеристик околоземного космического пространства.
		Владеть: — методами работы с моделями атмосферы, ионосферы и геомагнитного поля.
	ПК-2.3. Владеет методами интерпретации результатов анализа природных явлений и процессов, а также умение формулировать обоснованные выводы и рекомендации для управления природными ресурсами и охраны окружающей среды.	— взаимосвязь межлу процессами
		характеристик околоземного космического пространства. Владеть: — владеть методикой прогноза индекса геомагнитной активности.

4. Структура и содержание дисциплины

4.1. Объем дисциплины

Объем дисциплины составляет: 2 зачетные единицы, 72 академических часа.

Таблица 2. Объем дисциплины по видам учебных занятий в академических часах

	Очная (обуче		Заочная форма обучения		
Объём дисциплины	Семестр	Итого	Курс	Итого	
	5 семестр		3 курс		
Зачётные единицы	2	2	2	2	
Контактная работа обучающихся с					
преподавателем	32	32	8	8	
(по видам аудиторных учебных занятий) – всего:					
в том числе:	=	ı	-	-	
— лекции	14	14	4	4	
 занятия семинарского типа 	•	ı	-	-	
практические занятия	18	18	4	4	
— лабораторные занятия	-	-	-	-	
Самостоятельная работа (далее – СРС) – всего:	39,34	39,34	63,34	63,34	
в том числе:	-	ı	-	-	
— курсовая работа	•	ı	-	-	
— контрольная работа	-	-	-	-	
Контроль:	0,66	0,66	0,66	0,66	
ВСЕГО ЧАСОВ:	72	72	72	72	
Вид промежуточной аттестации	Зачет	Зачет	Зачет	Зачет	

4.2. Структура дисциплины

Таблица 3. Структура дисциплины для очной формы обучения

		p can	Виды учебной работы, в т.ч. самостоятельная работа студентов, час. Формы			Индикаторы		
Nº	Раздел / тема дисциплины	Лекции	Практические занятия	CPC	текущего контроля успеваемости	Формируемые компетенции	достижения компетенций	
				5 cc	еместр			
1	Околоземное космическое пространство. Атмосфера Земли.	2	6	6	Выполнение практической работы.	ПК-2	ПК-2.1 ПК-2.2 ПК-2.3	
2	Магнитное поле Земли.	2	2	6	Выполнение практической работы.	ПК-2	ПК-2.1 ПК-2.2 ПК-2.3	
3	Солнечное излучение и солнечный ветер.	2	2	6	Выполнение практической работы.	ПК-2	ПК-2.1 ПК-2.2 ПК-2.3	

	Раздел / тема дисциплины	Виды учебной работы, в т.ч. самостоятельная работа студентов, час.		- Формы			
Nº		Лекции	Практические занятия	CPC	текущего контроля успеваемости	Формируемые компетенции	Индикаторы достижения компетенций
	l			5 c	еместр		
4	Геофизические процессы в околоземном пространстве.	2	2	4	Выполнение практической работы.	ПК-2	ПК-2.1 ПК-2.2 ПК-2.3
5	Радиационная обстановка в космосе.	2	2	6	Выполнение практической работы.	ПК-2	ПК-2.1 ПК-2.2 ПК-2.3
6	Воздействие космической среды на космические аппараты.	2	2	6	Выполнение практической работы.	ПК-2	ПК-2.1 ПК-2.2 ПК-2.3
7	Прикладные аспекты физики околоземного пространства.	2	2	5,34	Выполнение практической работы.	ПК-2	ПК-2.1 ПК-2.2 ПК-2.3
	ИТОГО	14	18	39,34			

Таблица 4. Структура дисциплины для заочной формы обучения

	Paras (saus	Виды учебной работы, в т.ч. самостоятельная работа студентов, час.		Формы		Индикаторы	
Nº	Раздел / тема дисциплины	Лекции	Практические занятия	CPC	текущего контроля успеваемости	Формируемые компетенции	достижения компетенций
				3	курс		
1	Околоземное космическое пространство. Атмосфера Земли.	еское 2 0 8 практической работы. ПК-2		ПК-2.1 ПК-2.2 ПК-2.3			
2	Магнитное поле Земли.	0	2	8	Выполнение практической работы.	ПК-2	ПК-2.1 ПК-2.2 ПК-2.3
3	Солнечное излучение и солнечный ветер.	2	2	8	Выполнение практической работы.	ПК-2	ПК-2.1 ПК-2.2 ПК-2.3
4	Геофизические процессы в околоземном пространстве.	0	0	4	Выполнение практической работы.	ПК-2	ПК-2.1 ПК-2.2 ПК-2.3
5	Радиационная обстановка в космосе.	0	0	4	Выполнение практической работы.	ПК-2	ПК-2.1 ПК-2.2 ПК-2.3
6	Воздействие космической среды на космические аппараты	0	0	4	Выполнение практической работы.	ПК-2	ПК-2.1 ПК-2.2 ПК-2.3
7	Прикладные аспекты физики околоземного пространства	0	0	5,34	Выполнение практической работы.	ПК-2	ПК-2.1 ПК-2.2 ПК-2.3
	ИТОГО	4	4	41,34			

4.3. Содержание разделов дисциплины

Таблица 5. Содержание разделов дисциплины

№	Наименование раздела / темы дисциплины	Содержание	Компетенция
1	Околоземное космическое пространство. Атмосфера Земли.	Основные понятия и определения (геокосмос, гелиосфера, ионосфера, магнитосфера и др). Важность изучения околоземного космического пространства Состав атмосферы. Тропосфера, стратосфера, мезосфера, термосфера, экзосфера. Ионосфера и её роль в космических процессах. Физические свойства атмосферы: температура, давление, плотность воздуха на разных высотах.	ПК-2.1 ПК-2.2 ПК-2.3
2	Магнитное поле Земли.	Происхождение и основные характеристики магнитного поля Земли. Магнитосфера и её взаимодействие с солнечным ветром: образование радиационных поясов, влияние солнечных возмущений на магнитосферу. Индексы геомагнитной активности.	ПК-2.1 ПК-2.2 ПК-2.3
3	Солнечное излучение и солнечный ветер.	Характеристики солнечного излучения: электромагнитный спектр Солнца, фотоны, частицы высоких энергий. Солнечный ветер: потоки заряженных частиц от Солнца. Солнечные вспышки и корональные выбросы массы (СМЕ). Характеристики солнечного ветра. Воздействие солнечной активности на земную атмосферу и технику. Солнечная активность, индексы солнечной активности.	ПК-2.1 ПК-2.2 ПК-2.3
4	Геофизические процессы в околоземном пространстве.	Полярные сияния. Механизм образования полярных сияний. Сезонные и географические особенности. Геомагнитные бури. Причины возникновения. Последствия для техники и здоровья человека.	ПК-2.1 ПК-2.2 ПК-2.3
5	Радиационная обстановка в космосе.	Естественная радиация в космосе. Радиационные пояса Земли. Защита от космической радиации	ПК-2.1 ПК-2.2 ПК-2.3
6	Воздействие космической среды на космические аппараты.	Эффекты космической радиации на электронику. Деградация материалов в условиях вакуума и радиации. Проблемы теплового режима спутников.	ПК-2.1 ПК-2.2 ПК-2.3
7	Прикладные аспекты физики околоземного пространства.	Навигационные системы (GPS, ГЛОНАСС): принцип работы и влияние космической погоды. Связь и телекоммуникации: орбитальные спутники связи, возможные проблемы при геомагнитной активности. Прогнозирование космической погоды.	ПК-2.1 ПК-2.2 ПК-2.3

4.4. Содержание занятий семинарского типа

Таблица 6. Содержание практических занятий для очной формы обучения

№ темы дисциплины	Тематика практических занятий		В том числе часов самостоятельной подготовки	
	5 семестр			
1	Практическая работа №1. Расчет параметров	2	4	

№ темы дисциплины	Тематика практических занятий	Всего	В том числе часов самостоятельной подготовки
	атмосферы по модели NRLMSIS.		
1	Практическая работа №2. Расчет химических компонентов атмосферы по модели NRLMSIS.	2	4
1	Практическая работа №3. Расчеты электронной концентрации по модели IRI.	2	6
2	Практическая работа №4. Расчеты по модели геомагнитного поля IGRF.	2	4
3	Практическая работа №5. Расчет параметров атмосферы в зависимости от уровня солнечной активности.	2	6
4	Практическая работа №6. Расчеты параметров атмосферы для различных уровней геомагнитной активности.	2	6
5	Практическая работа №7. Составить таблицу основных компонентов естественной космической радиации.	2	4
6	Практическая работа №8. Эффекты космической радиации на электронику.	2	4
7	Практическая работа №9. Прогноз индекса геомагнитной активности Ар.	2	5,34
	ВСЕГО	18	39,34

Таблица 7. Содержание практических занятий для заочной формы обучения

№ темы дисциплины	Тематика практических занятий	Всего	В том числе часов самостоятельной подготовки
	3 курс		
1	Практическая работа №1. Расчет параметров атмосферы по модели NRLMSIS.	2	2
2	Практическая работа №2. Расчет химических компонентов атмосферы по модели NRLMSIS.	0	2
3	Практическая работа №3. Расчеты электронной концентрации по модели IRI.	2	2
4	Практическая работа №4. Расчеты по модели геомагнитного поля IGRF.	0	2
5	Практическая работа №5. Расчет параметров атмосферы в зависимости от уровня солнечной активности.	0	2
6	Практическая работа №6. Практическая работа №6. Расчеты параметров атмосферы для различных уровней геомагнитной активности.	0	4
7	Практическая работа №7. Составить таблицу основных компонентов естественной космической радиации.	0	2
8	Практическая работа №8. Эффекты космической радиации на электронику.	0	4
9	Практическая работа №9. Прогноз индекса геомагнитной активности Ар.	0	2
	ВСЕГО	4	22

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Электронный учебный курс «**Б1.В.ДВ.01.02.05 Основы физики околоземного космического пространства**» в системе Moodle [Электронный ресурс]. Режим доступа: https://moodle.rshu.ru/

6. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Учет успеваемости обучающегося по дисциплине осуществляется по 100-балльной шкале.

Таблица 7. Учёт успеваемости обучающегося по дисциплине

Учет успеваемости	Количество баллов
– Максимальное количество баллов по дисциплине за один семестр	100
-Максимальное количество баллов за выполнение всех видов текущего контроля:	100
в том числе максимальное количество баллов за прохождение промежуточной аттестации	30

6.1. Текущий контроль

Задания, методика выполнения и критерии оценивания текущего контроля по разделам дисциплины представлены в Фонде оценочных средств по данной дисциплине.

6.2. Промежуточная аттестация

Перечень вопросов и критерии оценивания ответов на вопросы в билете по темам дисциплины представлены в Фонде оценочных средств по данной дисциплине.

Форма промежуточной аттестации по дисциплине: зачет.

Форма проведения зачета: устный ответ на два вопроса в билете.

6.3. Балльно-рейтинговая система оценивания

Таблица 8. Распределение баллов по видам учебной работы — 5 семестр для очной формы обучения и 3 курс для заочной формы обучения

Вид учебной работы, за которую ставятся баллы	Баллы
Текущий контроль:	0-100
в том числе промежуточная аттестация	0-30
ИТОГО	0-100

Таблица 8.1. Распределение баллов по текущему контролю

$N_{\underline{0}}$	Вид работ	Min	Max
1.	Обязательная часть		
1.1	Текущий контроль успеваемости по проверке сформированности остаточных знаний		
1.1.1	Практическая работа №1. Расчет параметров атмосферы по модели NRLMSIS.	1	2
1.1.2	Практическая работа №2. Расчет химических компонентов атмосферы по модели NRLMSIS.	1	2
1.1.3	Практическая работа №3. Расчеты электронной концентрации по модели IRI.	1	2
1.1.4	Практическая работа №4. Расчеты по модели геомагнитного поля IGRF.	1	2

1.1.5 Практическая работа №5. Расчет параметров		
атмосферы в зависимости от уровня солнечной	1	2
активности.		
1.1.6 Практическая работа №6. Расчеты параметров		
атмосферы для различных уровней геомагнитной	1	2
активности по модели геомагнитного поля IGRF.		
1.1.7 Практическая работа №7. Составить таблицу		
основных компонентов естественной космической	2	4
радиации.		
1.1.8 Практическая работа №8. Эффекты космической	2	4
радиации на электронику.	2	4
1.1.9 Практическая работа №9. Прогноз индекса	2	4
геомагнитной активности Ар.	Z	4
Итого баллов по обязательной части	16	40
2. Вариативная часть		
2.1 Реферат «Навигационные системы (GPS,	1	5
ГЛОНАСС), связь и телекоммуникации: принцип		
работы и влияние космической погоды».		
2.2 Расчет минимальной скорости ионизации	10	25
электрона.		
2.3 Слушатель цикла научно-популярных лекций	1	10
«Метеорологические среды»		
2.4 Участие в олимпиаде (физика, математика,	5	10
метеорология)		
2.4.1 участие	5	5
2.4.2 призер	10	10
2.5 Публикация в индексируемом журнале (совместно	10	10
с преподавателем)		
2.6 Акселерационная программа/ проект	20	40
Росмолодежи		
2.6.1 участие	20	20
2.6.2 грант	40	40
Промежуточная аттестация по дисциплине	0	30
Итого баллов по вариативной части	43	60
Итого баллов по дисциплине		100

Таблица 8.2. Конвертация баллов в итоговую оценку

Оценка	Баллы
Зачтено	40-100
Не зачтено	0-39

7. Методические рекомендации для обучающихся по освоению дисциплины

Методические рекомендации ко всем видам аудиторных занятий, а также методические рекомендации по организации самостоятельной работы, в том числе по подготовке к текущему контролю и промежуточной аттестации представлены в Методических рекомендации для обучающихся по освоению дисциплины «Метеорологическое обслуживание и оценка погодных рисков».

8. Учебно-методическое и информационное обеспечение дисциплины

8.1. Перечень основной и дополнительной учебной литературы

Основная литература:

1. Кулешов Ю.В., Краснов В.М., Готюр И.А. Основы физики околоземного космического пространства: Учебник/ Ю.В. Кулешов, В.М. Краснов, И.А. Готюр, под общ. ред. д-ра техн. наук, проф. Ю.В. Кулешова — СПб.: Издательско-

- полиграфическая ассоциация высших учебных заведений, 2022. 306с. URL: https://elibrary.ru/item.asp?edn=xrjfbh
- 2. JM Picone, AE Hedin, DP Drob, AC Aikin Эмпирическая модель атмосферы NRLMSIS-00: статистические сравнения и научные вопросы [Текст] / JM Picone, AE Hedin, DP Drob, AC Aikin // J. Geophys. Res., 107 (A12), 1468, DOI: 10.1029 / 2002JA009430, 2002.
- 3. Методические указания Атмосфера земли верхняя, Методика расчета индексов солнечной и геомагнитной активности для определения плотности / РД-50-25645.120-85, Государственный комитет СССР по стандартам, 1987. —39 с.

Дополнительная литература:

- 1. Модель космоса. Т.1. Физические условия в космическом пространстве/ под ред. Проф. Панасюка М.И. [Текст]/ М.: Изд-во МГУ им. М.В. Ломоносова, 2007. 873 с.
- 2. Л. И. Мирошниченко. Физика Солнца и солнечно-земных связей. Под редакцией профессора М. И. Панасюка. [Текст]: Учебное пособие. Москва: Университетская книга. 2011. 174 с.
- 3. Н.А. Бархатов, О.М. Бархатова Введение в солнечно-земную физику [Текст]: учебно-научное пособие / Н.А. Бархатов, О.М. Бархатова Нижний Новгород: издво ГОУ ВПО НГПУ. 2009. –494 с.

8.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"

- 1. Образовательная платформа Яндекс Практикум [Электронный ресурс]. Режим доступа: https://practicum.yandex.ru/
- 2. Образовательная платформа Открытое образование [Электронный ресурс]. Режим доступа: https://openedu.ru/
- 3. Образовательная платформа Лекториум [Электронный ресурс]. Режим доступа: https://www.lektorium.tv/

8.3. Перечень программного обеспечения

- 1. Эмпирические модели верхней атмосферы URL: https://ccmc.gsfc.nasa.gov/modelweb/models/NRLMSIS00.php [Электронный ресурс].
- 2. Модель ионосферы IRI. URL: https://ccmc.gsfc.nasa.gov/modelweb/models home.html
- 3. Модель геомагнитного поля IGRF
 IRI URL:

 https://ccmc.gsfc.nasa.gov/modelweb/models_home.html
- 4. Файловый архиватор: 7-zip [Электронный ресурс]. Режим доступа: https://www.7-zip.org/
- 5. Файловый менеджер: Far-manager [Электронный ресурс]. Режим доступа: https://farmanager.com/
- 6. Офисный пакет: OpenOffice [Электронный ресурс]. Режим доступа: https://www.openoffice.org/ru/

8.4. Перечень информационных справочных систем

- 1. Электронно-библиотечная система ГидроМетеоОнлайн, Режим доступа: http://elib.rshu.ru
- 2. Электронно-библиотечная система Знаниум. Режим доступа: http://znanium.com

8.5. Перечень профессиональных баз данных

- 1. Электронная библиотечная система «Znanium» [Электронный ресурс]. Режим доступа: https://znanium.ru/
- 2. Электронная библиотечная система «Юрайт» [Электронный ресурс]. Режим доступа: https://urait.ru/
- 3. Электронная научная библиотека «Elibrary» [Электронный ресурс]. Режим доступа: https://elibrary.ru/
- 4. Электронная научная библиотека «КиберЛенинка» [Электронный ресурс]. Режим доступа: https://cyberleninka.ru/

9. Материально-техническое обеспечение дисциплины

Материально-техническое обеспечение программы соответствует действующим санитарно-техническим и противопожарным правилам и нормам и обеспечивает проведение всех видов аудиторных занятий и самостоятельной работы студентов.

Учебная аудитории для проведения занятий лекционного типа — укомплектована специализированной (учебной) мебелью, набором демонстрационного оборудования и учебно-наглядными пособиями, обеспечивающими тематические иллюстрации, соответствующие рабочим учебным программам дисциплин (модулей).

Учебная аудитория для групповых и индивидуальных консультаций — укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации.

Учебная аудитория для текущего контроля и промежуточной аттестации — укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации.

Учебно-научный лабораторный центр «ИНФОГЕО» — укомплектована специализированной (учебной) мебелью, компьютерами, служащими для работы с информацией.

Помещение для самостоятельной работы — укомплектовано специализированной (учебной) мебелью, оснащено компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечено доступом в электронную информационно-образовательную среду организации.

Помещение для хранения и профилактического обслуживания учебного оборудования.

10. Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности.

11. Возможность применения электронного обучения и дистанционных образовательных технологий

Дисциплина может реализовываться с применением электронного обучения и дистанционных образовательных технологий.