М.Ю. Белевич

О «СПЕКТРАЛЬНОЙ» ФОРМЕ УРАВНЕНИЙ ГИДРОМЕХАНИКИ II. ФУНКЦИИ, КАК БЕСКОНЕЧНОМЕРНЫЕ ТЕНЗОРЫ

M. Yu. Belevich

ON THE «SPECTRAL» FORM OF THE FLUID MECHANICS EQUATIONS II. FUNCTIONS AS INFINITE DIMENSIONAL TENSORS

Статья посвящена рассмотрению функций, как бесконечномерных тензоров, и построению соответствующего векторного пространства.

Ключевые слова: преобразование Фурье, интегральные преобразования, законы сохранения, спектральные уравнения.

Article is dedicated to the consideration of functions as infinite dimensional tensors and the construction of the corresponding vector space.

Key words: Fourier transform, Integral transforms, conservation laws, spectral equations.

Введение

Вторая часть работы [1] посвящена рассмотрению функций, как бесконечномерных тензоров, и построению соответствующего векторного пространства.

Стандартный способ построения линейного пространства с базисом включает, как правило, следующие шаги:

- 1) задание множества элементов:
- 2) введение структуры линейного пространства, т.е. надлежащее определение правил сложения элементов и умножения элемента на число;
- 3) определение размерности пространства и выбор базиса, т.е. нахождение максимальной совокупности линейно независимых элементов.

Такая процедура хороша, когда существует какой-то внешний мотив для определения правил сложения элементов и умножения их на числа. В противном случае может оказаться удобным иной способ, заключающийся в том, что вначале задается размерность будущего линейного пространства (множество элементов полагается известным) и указываются базисные элементы, а затем определяются операции сложения элементов и умножения элемента на число так, чтобы аксиомы линейного пространства выполнялись, и не нарушалась линейная независимость базисных элементов. В нашем случае предпочтительным оказывается второй способ.

Построение несчетномерного векторного пространства

Рассмотрим множество F, содержащее несчетное количество элементов и введем на нем структуру линейного пространства, выполнив следующие действия.

- 1. Выберем размерность строящегося векторного пространства и будем считать, что мощность максимального множества линейно независимых элементов равна c мощности континуума.
- 2. Каждый элемент \overline{f} из F снабдим (произвольно) уникальным упорядоченным несчетным набором чисел $\overline{f} = (..., f^t, ...)$, где $f^t \in \mathbb{C}$ и $t \in \mathbb{R}^1$ номер числа в наборе. Приписывание элементам F уникальных несчетных наборов чисел всегда возможно, так как множество таких наборов эквивалентно множеству F, поскольку имеет мощность $c^2 = c$ [4].
- 3. Множество $B = \{\overline{e}_t\}_{t \in \mathbb{R}^1}$ элементов из F, снабженных наборами чисел вида $\delta_t^s = \delta(s-t)dt$, где $\delta(x)$ дельта-функция¹, а s номер числа в наборе, назовем базисом пространства F, а введенные выше в п.2 наборы чисел компонентами элементов из F относительно базиса B. Далее, компоненты элементов пространства F нумеруются верхними индексами, а базисные элементы нижними.
- 4. Элемент с нулевым набором компонент обозначим символом 0 и назовём *нулевым* элементом.
- 5. Определим операции сложения и умножения на число так, чтобы для множества F выполнялись аксиомы векторного пространства и сохранялась линейная независимость элементов множества B. Именно, пусть $\overline{f} = (..., f', ...), \ \overline{g} = (..., g', ...)$ и $\alpha \in \mathbb{R}^1$. Тогда:
 - а) суммой двух элементов \overline{f} , $\overline{g} \in F$ называется элемент $\overline{h} \in F$ такой, что

$$\overline{f} + \overline{g} = \overline{h} = (...,h^t,...), \quad h^t = f^t + g^t;$$

б) произведением элемента \overline{f} на число lpha называется элемент $\overline{p} \in F$ такой, что

$$\alpha \overline{f} = \overline{p} = (..., p^t, ...), \quad p^t = \alpha f^t.$$

6. По определению полагаем, что для любого элемента из *F* имеет место представление:

$$\overline{f} = \int_t f^t \overline{e}_t,$$

где \int_t означает непрерывное суммирование по $t \in \mathbb{R}^1$. Базисные элементы, в свою очередь, представляются в виде:

$$\overline{e}_s = \int_t \delta_s^t \overline{e}_t,$$

где $\delta_s^t - t$ -ая компонента s-го базисного вектора из B.

В отличие от базиса Гамеля (см., например, [2]), произвольный элемент из F представляется линейной комбинацией, содержащей несчетное число слагаемых.

Под $\delta(x)$ здесь понимается несчетный набор чисел равных нулю для всех $x \neq 0$ и обращающихся в точке x = 0 в бесконечность так, что $\delta(s-t)dt = \begin{cases} 1, & s = t, \\ 0, & s \neq t. \end{cases}$ (ср. с определением в [2, с. 205]).

Легко видеть, что с определенными выше правилами сложения элементов множества F и умножения их на числа, аксиомы векторного пространства тривиально выполняются. Поскольку мощность множества базисных векторов была принята равной c (мощности континуума), элементы из векторного пространства F будем называть c-векторами. На рис. 1 показана аналогия c-векторов с конечномерными векторами.

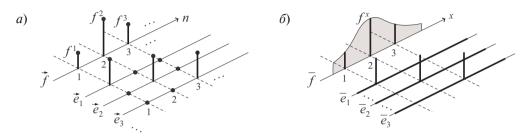


Рис. 1. Аналогия c-векторов с конечномерными векторами: a — представление конечномерного вектора \vec{f} и базисных векторов $\vec{e_j}$ своими компонентами относительно базиса $\{\vec{e_j}\}_i$; δ — представление c-вектора \vec{f} и базисных векторов $\vec{e_v}$ своими компонентами относительно базиса $\{\vec{e_v}\}_{v\in\mathbb{R}^1}$

Дуальные пространства

Определим, далее, векторное пространство F_* 1-форм, дуальное рассмотренному выше пространству F_* Элементами F_* служат функции на векторах пространства F_* Дуальным базисом B_* в F_* будет такой набор 1-форм $\{\tilde{\sigma}^y\}_{v\in\mathbb{R}^1}$, что

$$\tilde{\sigma}^{y}(\overline{e}_{x}) = \delta_{x}^{y}. \tag{1}$$

Каждый элемент \widetilde{q} пространства F_* по определению представляется в виде:

$$\tilde{q} = \int_{v} \tilde{\sigma}^{y} q_{y}.$$

Несчетный набор чисел (..., q_y , ...), $q_y \in \mathbb{C}$ (т.е. компонент) однозначно определяет элемент \widetilde{q} относительно базиса B_* . Нулевой элемент имеет нулевой набор чисел. Базисные 1-формы $\widetilde{\sigma}^y$ снабжены наборами чисел вида δ_x^y , где x — номер компоненты², т.е. могут быть записаны в виде:

$$\tilde{\sigma}^y = \int_x \tilde{\sigma}^x \delta_x^y.$$

Здесь и далее, компоненты элементов дуального пространства F_* нумеруются нижними индексами, а базисные элементы — верхними. Значение базисной 1-формы $\tilde{\sigma}^y$ на произвольном векторе \bar{f} равно значению его y-компоненты f^y :

² Таким образом, значение базисной 1-формы $\widetilde{\sigma}^y$ на базисном c-векторе \overline{e}_x , равное $\delta_x^y = \delta(y-x)dx$, в зависимости от контекста, интерпретируется как компонента того или иного базисного объекта (c-вектора или 1-формы) в собственном базисе.

$$\tilde{\sigma}^{y}(\overline{f}) = \tilde{\sigma}^{y}(\int_{x} f^{x} \overline{e}_{x}) = \int_{x} f^{x} \delta_{x}^{y} = f^{y}. \tag{2}$$

Аналогично, значение произвольной 1-формы \tilde{q} на базисном векторе \bar{e}_x дает значение ее x-компоненты q_x :

$$\tilde{q}(\overline{e}_x) = \int_{y} \tilde{\sigma}^y (\overline{e}_x) q_y = \int_{y} \delta_x^y q_y = q_x.$$
 (3)

Наконец, значение произвольной 1-формы на произвольном векторе \widetilde{q} (\overline{f}) равно

$$\tilde{q}\left(\overline{f}\right) = \int_{\mathcal{V}} \tilde{\sigma}^{y} \left(\int_{x} f^{x} \overline{e}_{x} \right) q_{y} = \int_{\mathcal{V}} \left(\int_{x} f^{x} \tilde{\sigma}^{y} \left(\overline{e}_{x} \right) \right) q_{y} = \int_{\mathcal{V}} \left(\int_{x} f^{x} \delta_{x}^{y} \right) q_{y} = \int_{\mathcal{V}} f^{y} q_{y}. \tag{4}$$

Пространством, дуальным пространству функций одной вещественной переменной (или, в нашей интерпретации, c-векторов), является пространство линейных функционалов, или пространство мер [3].

Таким образом, если q_y интерпретируется как мера (например, q(y)dy), то последнее выражение, следует понимать как интеграл

$$\tilde{q}\left(\overline{f}\right) = \int_{v \in \mathbb{R}^1} q(y) f(y) dy. \tag{5}$$

В случае непрерывных линейных функционалов, теорема Рисса о представлении (см., например, [4]) утверждает, что всякий такой функционал может быть записан в виде скалярного произведения. Выражения (2)—(3) по аналогии с (5), записываются следующим образом:

$$\tilde{\sigma}^{y}(\overline{f}) = \int_{x} f^{x} \delta_{x}^{y} = \int_{x} f(x) \delta(y - x) dx = f(y),$$

$$\tilde{q}(\overline{e}_{x}) = \int_{y} \delta_{x}^{y} q_{y} = \int_{y} \delta(y - x) dx q(y) dy = q(x) dx.$$

На рис. 2 показана аналогия *c*1-форм с конечномерными 1-формами.

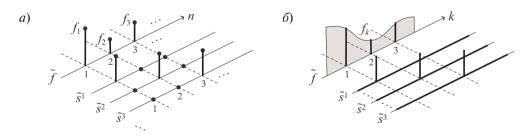


Рис. 2. Аналогия c1-форм с конечномерными 1-формами: a — представление конечномерной 1-формы \widetilde{f} и базисных 1-форм \widetilde{s}^j своими компонентами относительно базиса $\{\,\widetilde{s}^i\,\}_i$; δ — представление c1-формыf и базисных c1-форм \widetilde{s}^k своими компонентами относительно базиса $\{\,\widetilde{s}^k\,\}_{k\in\mathbb{R}^1}$

с-тензоры

Пользуясь введенными c-векторами и, дуальными им, 1-формами, можно построить c-объекты более высокого ранга. Для краткости будем называть их c-meнзорами. Например, если последовательность линейно независимых векторов, скажем $\{\bar{e}_t\}_{t\in\mathbb{R}^l}$, образует базис линейного пространства c-тензоров ранга 1, то тензорные произведения базисных c-векторов $\{\bar{e}_s\otimes\bar{e}_t\}_{s,t\in\mathbb{R}^l}$ могут рассматриваться как базис линейного пространства c-тензоров ранга 2 типа $\binom{0}{2}$, и т.д. Рассматриваемый в следующем пункте метрический тензор, пример c-тензора типа $\binom{0}{2}$. Аналогично, внешние произведения p базисных 1-форм образуют базисы линейных пространств p-форм, т.е. антисимметричных тензоров типа $\binom{0}{0}$ ранга $p\geqslant 2$.

Здесь используется стандартное обозначение компонент. Так если речь идет о компоненте тензора типа $\binom{m}{n}$, то она имеет m верхних индексов и n нижних. Компоненты c-тензора второго и большего ранга имеют по 2 и более индексов и традиционно интерпретируются как значения функции 2-х и более переменных. При такой интерпретации мы будем сначала записывать переменные, ассоциирующиеся с верхними индексами, а затем — c нижними, разделяя обе группы переменных точкой c запятой.

Скалярное произведение и норма

В общем случае скалярное произведение двух c-векторов вычисляется следующим образом. Пусть $\{\widetilde{\sigma}^s \otimes \widetilde{\sigma}^t\}_{s,t \in \mathbb{R}^l}$ — базис векторного пространства c-тензоров типа $\binom{0}{2}$. Тогда $\gamma = \int_{s,t} \gamma_{st} \widetilde{\sigma}^s \otimes \widetilde{\sigma}^t$ и, следовательно,

$$\gamma(\cdot,\cdot) = \int_{s-t} \gamma_{st} \tilde{\sigma}^{s}(\cdot) \tilde{\sigma}^{t}(\cdot).$$

Отсюда имеем

$$\begin{split} \gamma\left(\overline{f},\cdot\right) &= \int_{s} \int_{t} \gamma_{st} \widetilde{\sigma}^{s}\left(\overline{f}\right) \widetilde{\sigma}^{t}\left(\cdot\right) = \int_{s} \int_{t} \gamma_{st} \widetilde{\sigma}^{s}\left(\int_{s'} f^{s'} \overline{e}_{s'}\right) \widetilde{\sigma}^{t}\left(\cdot\right) = \\ &= \int_{s} \int_{t} \gamma_{st} \int_{s'} f^{s'} \underbrace{\widetilde{\sigma}^{s}\left(\overline{e}_{s'}\right)}_{\widetilde{\delta}^{s'}_{s'}} \widetilde{\sigma}^{t}\left(\cdot\right) = \int_{s} \int_{t} \gamma_{st} f^{s} \widetilde{\sigma}^{t}\left(\cdot\right) = \\ &= \int_{s} \int_{t} \gamma^{*}_{ts} f^{s} \widetilde{\sigma}^{t}\left(\cdot\right) = \int_{t} f^{*}_{t} \widetilde{\sigma}^{t}\left(\cdot\right) = \widetilde{f}^{*}\left(\cdot\right). \end{split}$$

Аналогично, найдем

$$\gamma\left(\cdot,\overline{f}\right) = \iint_{s} \gamma_{st} \tilde{\sigma}^{s}\left(\cdot\right) \tilde{\sigma}^{t}\left(\overline{f}\right) = \iint_{s} \gamma_{st} \tilde{\sigma}^{s}\left(\cdot\right) f^{t} = \iint_{s} \tilde{\sigma}^{s}\left(\cdot\right) = \tilde{f}\left(\cdot\right).$$

Таким образом, $\gamma(\bar{f},\cdot)=\widetilde{f}^*$ и $\gamma(\cdot,\bar{f})=\widetilde{f}(\cdot)$. Теперь для скалярного произведения получим

$$\gamma(\overline{f},\overline{h}) = \int_{s} \int_{t} \gamma_{st} \widetilde{\sigma}^{s}(\overline{f}) \widetilde{\sigma}^{t}(\overline{h}) = \int_{s} \int_{t} \gamma_{st} f^{s} h^{t} = \begin{cases} \int_{s} f^{s}(\int_{t} \gamma_{st} h^{t}) = \int_{s} f^{s} h_{s} = \widetilde{h}(\overline{f}), \\ \int_{t} h^{t}(\int_{s} \gamma_{ts}^{*} f^{s}) = \int_{t} h^{t} f_{t}^{*} = \widetilde{f}^{*}(\overline{h}). \end{cases}$$

Здесь $h_s = \int_t \gamma_{st} h^t$ — компоненты 1-формы \widetilde{h} и, аналогично, $f_t^* = \int_s \gamma_{ts}^* f^s$. Пользуясь приведенной выше интерпретацией 1-форм как мер, для компонент метрического c-тензора имеем $\gamma_{st} = \gamma(s,t) ds dt$, и, далее

$$f_t = f(t)dt = \int_{s} \gamma_{ts} f^{s} = \int_{s} \gamma_{st}^* f^{s} = \int_{s} \gamma^* (s,t) f(s) dt ds,$$

а скалярное произведение вычисляем по формуле

$$\gamma(\overline{f},\overline{h}) = \begin{cases} \int_{s} f(s) \int_{t} \gamma(s,t) h(t) dt ds = \int_{s} f(s) h(s) ds = \widetilde{h}(\overline{f}), \\ \int_{t} h(t) \int_{s} \gamma^{*}(t,s) f(s) ds dt = \int_{t} h(t) f^{*}(t) dt = \widetilde{f}^{*}(\overline{h}). \end{cases}$$

Норму c-вектора \overline{f} определим соотношением

$$\left\|\overline{f}\right\|^2 = \gamma\left(\overline{f},\overline{f}\right) = \int_t f^t f_t^* = \begin{cases} \widetilde{f}\left(\overline{f}\right), \\ \widetilde{f}^*\left(\overline{f}\right), \end{cases} \Rightarrow \left\|\overline{f}\right\|^2 \in \mathbb{R}^1,$$

т.е. норма c-вектора вещественна. Базисные c-векторы декартова базиса имеют норму, равную

$$\|\overline{e}_x\|^2 = \gamma(\overline{e}_x, \overline{e}_x) = \int_s \int_t \gamma_{st} \delta_x^s \delta_x^t = \gamma_{xx} = \delta(0) dx dx.$$

Определенное выше векторное пространство F является несчетномерным (по определению), несепарабельным (в силу несчетной размерности) гильбертовым пространством, т.е. полным относительно нормы $\|\cdot\|^2 = \gamma(\cdot, \cdot)$. В отличие от пространства $L_2(\mathbb{R}^1)$, элементами которого являются классы эквивалентности функций несовпадающих на множестве нулевой меры, два элемента пространства F считаются разными, если у них не совпадает хотя бы одна компонента.

Действительно, пусть $f = \int_s f^s e_s \, \text{и} \, f_t = f + \alpha e_t$. Тогда нормы c-векторов $f_t - f \, \text{и} \, f_t$ соответственно равны

$$\left\|\overline{f}_{t} - \overline{f}\right\|^{2} = \left\|\overline{f} + \alpha \overline{e}_{t} - \overline{f}\right\|^{2} = \alpha^{2} \left\|\overline{e}_{t}\right\|^{2} = \alpha^{2} \delta(0) dt dt,$$

$$\begin{split} \left\| \overline{f_t} \right\|^2 &= \left\| \overline{f} + \alpha \overline{e_t} \right\|^2 = \gamma \left(\int_s f^s \overline{e_s} + \alpha \overline{e_t}, \int_r f^r \overline{e_r} + \alpha \overline{e_t} \right) = \\ &= \int_s \int_r f^s f^r \gamma_{sr} + \alpha \int_s f^s \gamma_{st} + \alpha \int_r f^r \gamma_{tr} + \alpha^2 \gamma_{tt} = \\ &= \int_s f(s) f^*(s) ds + 2\alpha f^*(t) dt + \alpha^2 \delta(0) dt dt = \\ &= \left\| \overline{f} \right\|^2 + 2\alpha \overline{f(t)} dt + \alpha^2 \left\| \overline{e_t} \right\|^2. \end{split}$$

Область определения функций

Согласно классическому определению вещественная функция f одной вещественной переменной есть отображение множества $D(f) \subseteq \mathbb{R}^1$ — области определения функции во множество $R(f) \subseteq \mathbb{R}^1$ — область значения функции. Отметим, в связи с этим, лва обстоятельства.

Интерпретация функций, как отображений, здесь не отменяется, хотя и не является основной в данном контексте. Более того, любые векторы (конечномерные и бесконечномерные) могут рассматриваться как отображения множества индексов, нумерующих компоненты вектора, во множество вещественных чисел (для вещественных векторов). Важно иметь в виду, что так как компоненты вектора имеют смысл лишь при задании базиса, и, вообще говоря, различны в различных базисах, то с одним вектором связано множество отображений (M ⊆ N) → R¹, каждое из которых представляет данный вектор в соответствующем базисе.

В нашем случае ситуация буквально та же. Каждая классическая функция f'=f(t) есть представление некоторого c-вектора \overline{f} в данном (пока — единственном) декартовом (по определению) базисе. В любом другом базисе данному c-вектору \overline{f} будут соответствовать другие компоненты, а значит, и другая функция $\phi^s = \phi(s)$.

2. Функции, понимаемые, как компонентные представления c-векторов, суть отображения $\mathbb{R}^1 \to \mathbb{R}^1$. Классические же функции, как уже было сказано, обычно рассматриваются как отображения $\mathbb{R}^1 \supseteq D(f) \to R(f) \subseteq \mathbb{R}^1$. То что область значений — подмножество \mathbb{R}^1 , не принципиально, а вот то, что область определения не все \mathbb{R}^1 , по существу означает, что объектом рассмотрения здесь является класс эквивалентности c-векторов, имеющих в данном базисе совпадающие компоненты с индексами из D(f).

Литература

- Белевич М.Ю. О «спектральной» форме уравнений гидромеханики. І. Описание проблемы и пример подхода. // Ученые записки РГГМУ, 2014, № 37, с. 44–53.
- 2. *Колмогоров А.Н., Фомин С.В.* Элементы теории функций и функционального анализа. М.: Наука, 1968.-496 с.
- 3. Schwartz L. Analyse Mathématique. Vol. 1. Hermann, 1967 (перевод: Шварц Л. Анализ. Т. 1. М.: Мир, 1972. 824 с.).
- Richtmyer R.D. Principles of Advanced Mathematical Physics. Vol. 1. N.Y.: Springer-Verlag, 1978 (перевод: Рихтмайер Р. Принципы современной математической физики. Т. 1. М.: Мир, 1982. 488 с.).