М.Е. Баранова, А.С. Гаврилов, Е.В. Харченко

МЕТОД УЧЕТА ЗАСТРОЙКИ В ЗАДАЧЕ ПЕРЕНОСА И РАССЕЯНИЯ В АТМОСФЕРЕ НУКЛИДОВ ОТ АВАРИЙНЫХ ВЫБРОСОВ АЭС

M.E. Baranova, A.S. Gavrilov, E.V. Kharchenko

METHOD OF TAKING INTO ACCOUNT SITE BUILDING IN RADIONUCLIDE TRANSPORT AND DIFFUSION PROBLEM FOR CASES OF ACCIDENTAL RELEASES FROM NPP

Предлагается комбинированная гидротермодинамическая численная модель для расчета трехмерных полей скорости в атмосферном пограничном слое при наличии застройки промышленной зоны АЭС произвольной конфигурации. Результаты этих расчетов используются в качестве исходных данных для расчета турбулентной диффузии методом Монте-Карло. Результаты расчетов с использованием метода «виртуального источника» включаются, далее, в стандартную модель МАГАТЭ (методика МПА-98) для последующего расчета факторов разбавления и осаждения нуклидов на стадии проектирования атомных электростанций.

Ключевые слова: застройка, численное моделирование атмосферы, безопасность ядерной энергетики.

In order to calculate three-dimensional velocity field in the planetary boundary layer taking into account NPP site building of any configuration a complex numerical hydro-thermodynamic model is proposed. These computation results are used as initial data for turbulent diffusion calculation by Monte-Carlo method. Then, for further estimation of nuclide dispersion/deposition factors at a nuclear power plant design stage the calculation results obtained using «virtual source method» are included in the standard model approved by IAIA (normative document MDBA-98).

Key words: site building, meteorological numerical simulation, safety of nuclear energy facilities.

Расчет и прогноз рисков радиационного воздействия объектов ядерной энергетики является в настоящее время неотъемлемой составной частью проектной документации и, во многом, несет в себе элементы научного исследования.

Как известно, определяющим фактором, формирующим расчетные уровни облучения от аварийного источника, является перенос и рассеяние облака нуклидов, зависящее от метеорологических параметров (устойчивость атмосферы, скорость ветра, осадки), топографических параметров (наличие застройки промплощадки, тип подстилающей поверхности, рельеф района размещения АЭС) и высоты выброса.

Таким образом, атмосфера является важнейшим звеном при переходе от оценки вероятности аварийного выброса на АЭС к радиационному риску для населения, определяя вероятность формирования наихудших условий рассеяния аварийного выброса в рамках моделей атмосферного переноса. Действующая в настоящее время в Российской Федерации методика расчета характеристик рассеяния МПА-98 [1] реализует стандарт безопасности МАГАТЭ [2] и основана на варианте гауссовой модели переноса и рассеяния облака нуклидов, образовавшегося в результате залпового (мгновенного) выброса радиоактивных веществ, учитывает сухое и влажное осаждение примесей, а также восстанавливает цепочки радиоактивного распада нуклидов и дает возможность в итоге рассчитать биологические дозы облучения населения.

Используется специальная система декартовых координат, где ось x направлена вдоль вектора ветра на уровне геометрической высоты источника выброса, ось y — в поперечном направлении, а ось z — вертикально вверх.

Зависимость от времени объемной активности $C_{V,r}^{o}(x, t)$, Бк/м³, выбрасываемого радионуклида *r* в атмосфере на оси траектории движения облака (поперечная координата y = 0) на уровне подстилающей поверхности (высота z = 0) и на расстоянии *x* от точечного источника мгновенного выброса рассчитывается по формуле:

$$C_{V,r}^{o}(x,t) = Q_{o,r} \cdot G_{o,r}'(x,t), \qquad (1)$$

где $Q_{o,r}$ — величина мгновенного выброса радионуклида r, Бк; $G'_{o,r}(x, t)$ — так называемый фактор разбавления мгновенного выброса в атмосфере. Его можно рассчитать по формуле:

$$G_{o,r}'(x,t) = \frac{2}{\left(2\pi\right)^{3/2}} \frac{F_r(x)}{\sigma_x \sigma_y \sigma_z} \exp\left[-\frac{\left(x - Ut\right)^2}{2\sigma_x^2}\right] \exp\left[-\frac{h(x)^2}{2\sigma_z^2}\right],\tag{2}$$

где h(x) — высота центра облака выброса над поверхностью земли на расстоянии x от точки выброса; U — скорость ветра на высоте выброса; $F_r(x)$ — так называемый фактор истощения облака выброса для радионуклида r на расстоянии x по ветру (безразмерная величина, описывающая изменение интегрального количества выброшенного количества радионуклида r с расстоянием от места выброса, уменьшающегося за счет радиоактивного распада, сухого осаждения и вымывания его из облака осадками); $\sigma_x = \sigma_y$ и σ_z , — зависящие от расстояния дисперсии облака выброса в направлении движения облака по ветру x, в горизонтальном направлении поперек ветра y и в вертикальном направлении z.

Формулы (1) и (2) дают динамику изменения объемной активности в точке x, расположенной на траектории движения центра облака выброса. Для оценки же радиационных последствий прохождения такого облака (интеграла ингаляционного поступления в организм человека, выпадений на почву, дозы от внешнего излучения прошедшего облака) необходимо знать временной интеграл концентрации в этой точке. Его находят, интегрируя формулу (2) по времени t. В результате для временного интеграла концентрации $C_{v,r}(x)$ (Бк·с/м³), получим следующие формулы:

$$C_{v,r}(x) = \int_{0}^{\infty} Q_{o,r}G'_{o,r}(x,t)dt = Q_{o,r} \cdot G_{o,r}(x),$$
(3)

215

где
$$G_{o,r}(x) = \int_{0}^{\infty} G_{o,r}'(x,t) dt = \frac{F_r(x)}{\pi \sigma_y \sigma_z U} \exp\left[-\frac{h_{s \phi \phi}^2(x)}{2\sigma_z^2}\right]$$
 — так называемый временной ин-

теграл от мгновенного фактора разбавления (с/м³), далее для простоты именуемый «фактор разбавления». Формула (2.3) дает максимально возможные в данных условиях значения интеграла концентрации на расстоянии *x* от места выброса (на оси траектории движения облака выброса), а $h_{3\phi\phi}(x)$ — так называемая эффективная высота источника выбросов.

Интенсивность вымывания на землю примеси, содержащейся в облаке, во время выпадения осадков, зависит не от приземной концентрации, а от ее интегрального содержания в столбе воздуха, «промываемого» осадками на всем пути движения капель (или снежинок) через толщу облака выброса. Поэтому для учета этого фактора требуется знание не приземной концентрации примеси, а интеграла по вертикальному профилю ее распределения в облаке:

$$G_{o,r}^{z}(x) = \int_{0}^{\infty} G_{r}(x,z) dz = \frac{F_{r}(x)}{\sqrt{2\pi\sigma_{v}U}},$$
(4)

где $G_r(x, z)$ — разовый фактор разбавления концентрации на высоте z над уровнем земли.

Разовые выпадения на поверхность земли радионуклида *r* на расстоянии *x* от источника выброса рассчитываются по формуле:

$$C_{s,r}(x) = Q_{o,r} \left[V_{g,r} G_{o,r}(x) + \Lambda G_{o,r}^{z}(x) \right],$$
(5)

где $V_{g,r}$ — скорость сухого осаждения на поверхность земли (м/с); Λ — постоянная вымывания примеси из атмосферы осадками (1/с).

Методика МПА-98 предусматривает упрощенный вариант начального разбавления облака примеси за счет влияния зданий методом так называемого «виртуального источника», когда «выброс по прежнему считается точечным, но сдвинутым на такое расстояние R_0 против ветра, что расчетные концентрации примеси на оси «виртуальной» струи в геометрическом центре источника будут совпадать с реальной...» (раздел П4.6 [1]).

В данной методике расчетов используется оригинальная аппроксимация наиболее часто используемых формул Смита-Хоскера (σ₂) и Бриггса (σ_y), согласно которой обе эти функции могут быть рассчитаны по следующей общей формуле:

$$\sigma(x,z_0,P) = \frac{x}{\sqrt{a(z_0,P) + b(z_0,P)x}},\tag{6}$$

где *z*₀ — так называемый параметр шероховатости подстилающей поверхности, задаваемый таблично для различных типов поверхностей; *P* — параметр устойчивости Смита.

С учетом формулы (6) величина *R*₀ должна определяться отдельно для рассеяния в поперечном и вертикальном направлениях из следующего уравнения:

$$\Sigma_{y,z}(R) = \frac{R + R_0^{(y,z)}}{\sqrt{a_{y,z}(z_o, P) + b_{y,z}(z_o, P)(R + R_0^{(y,z)})}},$$
(7)

где $\sum_{y,z}(R)$ — поперечные направлению ветра стандартные отклонения частиц в горизонтальном (по *y*) и вертикальном (по *z*) направлениях на расстоянии *R* по направлению ветра от точки выброса (рис. 1).

Рис. 1. Общая схема конфигурирования виртуального источника в стандартной модели МАГАТЭ при учете застройки: *А* — точка фактического аварийного выброса, *B* — местоположение виртуального источника

Решение уравнения (7) относительно $R_0^{(y,z)}$ записывается здесь следующим образом:

$$R_0^{(\nu,z)} = \frac{1}{2} \Sigma_{\nu,z}^2 b_{\nu,z} - R + \sqrt{a_{\nu,z} \Sigma_{\nu,z}^2 + \frac{1}{4} \Sigma_{\nu,z}^2 b_{\nu,z}^2}, \qquad (8)$$

которое и использовалось нами для последующих расчетов.

Таким образом, основная проблема учета зданий при использовании МПА-98 состоит в построении методики расчета начального разбавления облака примеси в форме стандартных отклонений $\sum_{y,z}(R)$, для чего требуется привлечь уже значительно более физически содержательную модель по сравнению с гауссовой — трехмерную гидродинамическую модель обтекания зданий на масштабах промзоны.

В основу построения алгоритмов расчета активности нуклидов в данном исследовании положена комбинация трехмерной гидротермодинамической модели атмосферного пограничного слоя (ГДМ-модель) и стохастической модели турбулентной диффузии частиц примеси в турбулентной потоке (метод Монте-Карло, МК-модель). Теория вопроса изложена в монографии и ряде других публикаций [3–5]. От аналогичных моделей, описанных в литературе и широко применяемых за рубежом для решения прикладных задач, реализованную нами комбинацию ГДМ+МК моделей отличает их внутренняя согласованность по отношению к расчету вторых одноточечных моментов турбулентных пульсаций скорости и лагранжевых характеристик турбулентности.

экология

Это дает возможность весьма гибкого построения алгоритмов расчета процессов турбулентной диффузии практически для всех ситуаций, обычно осложняющих расчет загрязнения атмосферы.

На первом этапе, с помощью ГДМ-модели решается задача восстановления пространственной структуры атмосферы на основе любой доступной метеоинформации (метеостанции, посты наблюдения, синоптическая или аэрологическая информация, с возможностью усвоения данных поступающей по каналам связи в реальном масштабе времени). Ее описание и результаты верификация представлены в работе [6]. Модели в этом случае могут реализовываться в широком спектре вариантов (однородная и неоднородная поверхность, с учетом и без учета зданий), предполагая проведение предварительной настройки моделей на тот или иной тип задачи и имеющийся объем информации. В итоге, рассчитываются и сохраняются в памяти ЭВМ трехмерные поля компонент средней скорости ветра и характеристик турбулентности.

На втором этапе реализуется МК-модель. Для источника антропогенной примеси произвольной пространственно-временной структуры генерируется соответствующее их мощности и режиму работы число траекторий, вдоль которых для каждой из рассматриваемых частиц примеси рассчитывается случайное поле скорости в турбулентном потоке. При этом отслеживается положение частицы в каждый момент времени, моделируются эффекты их взаимодействия с подстилающей поверхностью и зданиями, а в случае необходимости — трансформация примеси за счет процессов вымывания осадками или радиоактивного распада.

Подобная схема моделирования диффузии реализует значительно более общий подход по отношению к не только описанной выше гауссовой модели, но даже и по отношению к широко известному полуэмпирическому уравнению турбулентной диффузии.

На основании статистической обработки количества и координат частиц на заданном удалении R вдоль направления среднего ветра как раз и производился расчет стандартного отклонения облака частиц примеси $\sum_{y,z}(R)$, входящего в формулу (7), задающую, таким образом, поправку в гауссову модель турбулентной диффузии нуклидов.

Рассмотрим результаты апробации разработанной технологии применительно к проектированию Лениградской атомной станции (ЛАЭС-2) в г. Сосновый Бор Ленинградской области.

С использованием данных о застройке промзоны в форматах ГИС ArcView 3.2 была создана цифровая модель ландшафта промплощадки и окружающей местности, общая конфигурация которой представлена на рис. 2.

В качестве источника кратковременного выброса рассматривался источник единичной мощности, размещаемый на высотах 30 и 100 м. В связи с тем, однако, что при расчете диффузии примеси с учетом застройки, источник может располагаться лишь в свободном от зданий пространстве, было выбрано несколько вариантов его пространственного расположения, представленные на рис. 3.

Источники с условными номерами 1, 2 и 3 располагались на минимально возможных для данного расчета расстояниях от внешнего ограждения реакторного корпуса, соответствующих удвоенному шагу расчетной сетки (около 8 м) в углах равностороннего треугольника с центром на оси реакторного корпуса (рис. 2).

Рис. 2. Участок территории ЛАЭС-2 (2006).

Сплошной линией выделена круговая область с радиусом *R* = 1 000 м с центром в точке расположения южного реакторного корпуса 1-й очереди ЛАЭС-2006, а пунктиром — аналогичная круговая область с центром в точке расположения северного реакторного корпуса 2-й очереди.

На врезке показано расположение источников выбросов для реакторов каждой очереди: 1, 2, 3 — кратковременные выбросы на высоте 30 м; 4 — непрерывный и кратковременный выброс на высоте 100 м (вентсистема)

Рис. 3. Результаты расчета максимальных значений фактора разбавления обеспеченности 99,5 % с осреднением 1 ч по 16 основным румбам ветра для источника в точке № 1 (высота 30 м) около южного реакторного корпуса первой очереди ЛАЭС-2 без учета (*a*) и с учетом застройки промзоны (*б*)

На рис. 3 демонстрируются примеры расчетов такого рода максимальных значений фактора разбавления с учетом и без учета застройки по 16 основным румбам ветра для источника в точке №1 около южного реакторного корпуса первой очереди ЛАЭС-2 с осреднением 1 ч.

Как можно видеть из сопоставления результатов расчетов факторов разбавления, рассчитанных с учетом и без учета застройки, ее влияние приводит к значительному (более чем на порядок величины) росту значений фактора разбавления в непосредственной близости к источнику и к снижению этих величин на расстояниях более 3 км от источника почти в два раза. Причиной такого поведения является увеличение интенсивности турбулентности над промзоной, вызванное влиянием застройки, в результате чего приземный максимум концентрации вне зависимости от характеристик устойчивости атмосферы смещается ближе к источнику выбросов.

Таким образом, застройка способствует дополнительному рассеянию облака нуклидов с соответствующим уменьшением уровней радиоактивного воздействия за пределами санитарно-защитной зоны АЭС.

Литература

- Методические указания по расчету радиационной обстановки в окружающей среде и ожидаемого облучения населения при кратковременных выбросах радиоактивных веществ в атмосферу (МПА-98). — М.: Минатом России, 1999.
- Учет дисперсионных параметров атмосферы при выборе площадок для атомных станций. Руководство по безопасности. // Серия изданий по безопасности МАГАТЭ №50-SG-S3, Вена, 1982. — 105с.
- 3. Экологический программный комплекс для персональных ЭВМ. Под ред. А.С. Гаврилова. СПб.: Гидрометеоиздат, 1992. 165 с.
- Баранова М.Е., Гаврилов А.С. Численное моделирование динамики обтекания турбулентным потоком тонких вертикальных ограждений. // Математическое моделирование, численные методы и комплексы программ: Межвуз. темат. сб. тр. Вып. 10. — СПб.: изд. СПбГАСУ, 2004, с. 85–94.
- Gavrilov A.S. Stochastic modelling of nuclear turbulent diffusion. Diffusion in lowest troposphere. // Proceeding of conference «Nuclear Risks, Environmental and Development Cooperation in The North of Europe» (Apatity, June 19–23, 1999), Umeå University, Sweden, 2000, pp. 80–84.
- Гаврилов А.С., Мханна А., Харченко Е.В. Верификация модели атмосферного пограничного слоя применительно к задачам прогноза загрязнения атмосферы от очагов лесных пожаров. // Учёные записки РГГМУ, 2013, № 31, с. 119–129.